Nanoparticles with rationally designed isoelectronic traps as fillers significantly enhance breakdown strength and electrostatic energy density of polymer composites

材料科学 复合材料 电介质 纳米颗粒 聚合物 空间电荷 电场 纳米复合材料 电荷密度 电子 光电子学 纳米技术 量子力学 物理
作者
Junyi Yu,Shanjun Ding,Shuhui Yu,Yu-Chen Lu,Pengpeng Xu,Baojin Chu,Rong Sun,Jianbin Xu,Ching‐Ping Wong
出处
期刊:Composites Science and Technology [Elsevier]
卷期号:195: 108201-108201 被引量:40
标识
DOI:10.1016/j.compscitech.2020.108201
摘要

Abstract Dielectric polymer nanocomposites with a high energy density and high charge-discharge efficiency are urgently in need which enable miniaturization of both electrical and electronic systems. One critical challenge for achieving a high energy density is the suppression of space charge movement in the composites which relates to the dielectric breakdown strength and thus energy density. Herein ZnS:O nanoparticles, in which a part of S in ZnS was substituted by O, were synthesized. The difference of electronegativity (ΔEN = 0.86) between S and O creates isoelectronic traps in the nanoparticles, which can to some extent bind space charges and suppress their movement. As a result, with ZnS:O as fillers and polyvinylidene fluoride (PVDF) as a host, the composites achieved a breakdown strength as high as 6000 kV/cm and an energy density of 14.4 J/cm3 with 2.5 vol% ZnS:O nanoparticles, which are nearly twice and over three times respectively of those of the pure PVDF (Eb ~3183 kV/cm, 4.6 J/cm3), and also much higher than those of ZnS filled PVDF. Moreover, the dielectric loss and leakage current were effectively suppressed, leading to a high charge-discharge efficiency of up to 97%. The present work provides an efficient approach of modulating the dielectric and electric performance of nanocomposites by confining charge carriers in the isoelectric traps. The effect was investigated by calculation of electric field threshold and electron hopping distance. Finite element simulation was employed to understand the mechanism which vividly interprets the above phenomenon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hannibal发布了新的文献求助10
2秒前
mary611发布了新的文献求助10
2秒前
cyndi发布了新的文献求助10
2秒前
头头啊头头啊完成签到,获得积分10
2秒前
3秒前
Kuripa发布了新的文献求助10
5秒前
田様应助小娄娄娄采纳,获得10
5秒前
思源应助开放大山采纳,获得10
6秒前
一枚小豆完成签到,获得积分10
6秒前
渣渣完成签到,获得积分10
6秒前
Jasper应助昏睡的嵩采纳,获得10
6秒前
嘻哈学习发布了新的文献求助10
7秒前
叶雨思空完成签到 ,获得积分10
7秒前
英姑应助撒西不理采纳,获得10
8秒前
tk完成签到 ,获得积分10
9秒前
孤独怀柔完成签到,获得积分10
9秒前
sabrina完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
Ash完成签到,获得积分10
13秒前
怕黑的楷瑞完成签到 ,获得积分10
13秒前
PPSlu完成签到,获得积分0
14秒前
CipherSage应助xhuryts采纳,获得10
14秒前
科研通AI5应助king采纳,获得10
14秒前
静待花开发布了新的文献求助10
15秒前
16秒前
666发布了新的文献求助10
16秒前
东方发布了新的文献求助10
17秒前
18秒前
Ava应助fffan采纳,获得30
18秒前
18秒前
小二郎应助Aikesi采纳,获得30
19秒前
小吕完成签到,获得积分10
19秒前
不安夜雪发布了新的文献求助10
20秒前
jhb完成签到 ,获得积分10
20秒前
21秒前
外向半青完成签到,获得积分10
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3541097
求助须知:如何正确求助?哪些是违规求助? 3118319
关于积分的说明 9334922
捐赠科研通 2816160
什么是DOI,文献DOI怎么找? 1548250
邀请新用户注册赠送积分活动 721318
科研通“疑难数据库(出版商)”最低求助积分说明 712678