Pelvic multi‐organ segmentation on cone‐beam CT for prostate adaptive radiotherapy

分割 人工智能 锥束ct 计算机科学 医学 特征(语言学) 锥束ct 基本事实 计算机视觉 放射科 计算机断层摄影术 语言学 哲学
作者
Yabo Fu,Yang Lei,Tonghe Wang,Sibo Tian,Pretesh Patel,Ashesh B. Jani,Walter J. Curran,Tian Liu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:47 (8): 3415-3422 被引量:46
标识
DOI:10.1002/mp.14196
摘要

Background and purpose The purpose of this study is to develop a deep learning‐based approach to simultaneously segment five pelvic organs including prostate, bladder, rectum, left and right femoral heads on cone‐beam CT (CBCT), as required elements for prostate adaptive radiotherapy planning. Materials and methods We propose to utilize both CBCT and CBCT‐based synthetic MRI (sMRI) for the segmentation of soft tissue and bony structures, as they provide complementary information for pelvic organ segmentation. CBCT images have superior bony structure contrast and sMRIs have superior soft tissue contrast. Prior to segmentation, sMRI was generated using a cycle‐consistent adversarial networks (CycleGAN), which was trained using paired CBCT‐MR images. To combine the advantages of both CBCT and sMRI, we developed a cross‐modality attention pyramid network with late feature fusion. Our method processes CBCT and sMRI inputs separately to extract CBCT‐specific and sMRI‐specific features prior to combining them in a late‐fusion network for final segmentation. The network was trained and tested using 100 patients’ datasets, with each dataset including the CBCT and manual physician contours. For comparison, we trained another two networks with different network inputs and architectures. The segmentation results were compared to manual contours for evaluations. Results For the proposed method, dice similarity coefficients and mean surface distances between the segmentation results and the ground truth were 0.96 ± 0.03, 0.65 ± 0.67 mm; 0.91 ± 0.08, 0.93 ± 0.96 mm; 0.93 ± 0.04, 0.72 ± 0.61 mm; 0.95 ± 0.05, 1.05 ± 1.40 mm; and 0.95 ± 0.05, 1.08 ± 1.48 mm for bladder, prostate, rectum, left and right femoral heads, respectively. As compared to the other two competing methods, our method has shown superior performance in terms of the segmentation accuracy. Conclusion We developed a deep learning‐based segmentation method to rapidly and accurately segment five pelvic organs simultaneously from daily CBCTs. The proposed method could be used in the clinic to support rapid target and organs‐at‐risk contouring for prostate adaptive radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1459发布了新的文献求助20
刚刚
1秒前
aich完成签到,获得积分10
1秒前
320me666完成签到 ,获得积分10
1秒前
1秒前
牟翎完成签到,获得积分10
3秒前
圣人海完成签到,获得积分10
5秒前
brainxue发布了新的文献求助10
5秒前
善良天抒完成签到,获得积分10
6秒前
罗罗诺亚索隆完成签到,获得积分10
8秒前
小陈完成签到,获得积分10
14秒前
时冬冬应助科研通管家采纳,获得20
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
Accepted应助科研通管家采纳,获得10
14秒前
Accepted应助科研通管家采纳,获得10
14秒前
干净的时光应助刘老哥6采纳,获得20
15秒前
chenzq完成签到,获得积分10
15秒前
背后的果汁完成签到,获得积分10
17秒前
深呼吸完成签到,获得积分20
20秒前
顾矜应助brainxue采纳,获得10
20秒前
li完成签到,获得积分20
21秒前
23秒前
雨相所至应助smile采纳,获得10
25秒前
Hyc28441711完成签到,获得积分10
25秒前
深呼吸发布了新的文献求助10
26秒前
刘老哥6完成签到,获得积分20
26秒前
贝利亚完成签到,获得积分10
27秒前
本草石之寒温完成签到 ,获得积分10
33秒前
june1111完成签到,获得积分10
33秒前
34秒前
蛋妮完成签到 ,获得积分10
35秒前
livra1058完成签到,获得积分10
35秒前
乐观银耳汤完成签到,获得积分10
37秒前
guolina完成签到 ,获得积分10
38秒前
Jiang发布了新的文献求助30
39秒前
xiaobai完成签到,获得积分10
42秒前
苹果含烟完成签到,获得积分10
43秒前
叶夜南完成签到 ,获得积分10
47秒前
ChenLi完成签到,获得积分10
47秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813358
关于积分的说明 7900144
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316594
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175