Pelvic multi‐organ segmentation on cone‐beam CT for prostate adaptive radiotherapy

分割 人工智能 锥束ct 计算机科学 医学 特征(语言学) 锥束ct 基本事实 计算机视觉 放射科 计算机断层摄影术 语言学 哲学
作者
Yabo Fu,Yang Lei,Tonghe Wang,Sibo Tian,Pretesh Patel,Ashesh B. Jani,Walter J. Curran,Tian Liu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:47 (8): 3415-3422 被引量:46
标识
DOI:10.1002/mp.14196
摘要

Background and purpose The purpose of this study is to develop a deep learning‐based approach to simultaneously segment five pelvic organs including prostate, bladder, rectum, left and right femoral heads on cone‐beam CT (CBCT), as required elements for prostate adaptive radiotherapy planning. Materials and methods We propose to utilize both CBCT and CBCT‐based synthetic MRI (sMRI) for the segmentation of soft tissue and bony structures, as they provide complementary information for pelvic organ segmentation. CBCT images have superior bony structure contrast and sMRIs have superior soft tissue contrast. Prior to segmentation, sMRI was generated using a cycle‐consistent adversarial networks (CycleGAN), which was trained using paired CBCT‐MR images. To combine the advantages of both CBCT and sMRI, we developed a cross‐modality attention pyramid network with late feature fusion. Our method processes CBCT and sMRI inputs separately to extract CBCT‐specific and sMRI‐specific features prior to combining them in a late‐fusion network for final segmentation. The network was trained and tested using 100 patients’ datasets, with each dataset including the CBCT and manual physician contours. For comparison, we trained another two networks with different network inputs and architectures. The segmentation results were compared to manual contours for evaluations. Results For the proposed method, dice similarity coefficients and mean surface distances between the segmentation results and the ground truth were 0.96 ± 0.03, 0.65 ± 0.67 mm; 0.91 ± 0.08, 0.93 ± 0.96 mm; 0.93 ± 0.04, 0.72 ± 0.61 mm; 0.95 ± 0.05, 1.05 ± 1.40 mm; and 0.95 ± 0.05, 1.08 ± 1.48 mm for bladder, prostate, rectum, left and right femoral heads, respectively. As compared to the other two competing methods, our method has shown superior performance in terms of the segmentation accuracy. Conclusion We developed a deep learning‐based segmentation method to rapidly and accurately segment five pelvic organs simultaneously from daily CBCTs. The proposed method could be used in the clinic to support rapid target and organs‐at‐risk contouring for prostate adaptive radiation therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助念姬采纳,获得10
刚刚
隐形曼青应助yuanyuan采纳,获得10
1秒前
1秒前
萤火虫完成签到,获得积分20
1秒前
2秒前
百事可乐完成签到,获得积分10
2秒前
寒冷猫咪发布了新的文献求助10
2秒前
雪霁天晴完成签到,获得积分10
3秒前
3秒前
科研通AI6应助不吃香菜采纳,获得10
3秒前
萤火虫发布了新的文献求助10
4秒前
4秒前
4秒前
斯文败类应助平常的雨兰采纳,获得10
4秒前
happiness发布了新的文献求助10
5秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
zho应助emilybei采纳,获得10
6秒前
Camille完成签到,获得积分10
7秒前
现安完成签到,获得积分10
8秒前
m111发布了新的文献求助10
8秒前
9秒前
Yelouy发布了新的文献求助10
10秒前
专注的问寒应助寒冷猫咪采纳,获得20
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
13秒前
wxxsx发布了新的文献求助10
13秒前
14秒前
无情的踏歌应助萤火虫采纳,获得40
16秒前
在水一方应助赤道北极采纳,获得10
16秒前
16秒前
18秒前
研友_X89J6L发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598711
求助须知:如何正确求助?哪些是违规求助? 4684157
关于积分的说明 14833941
捐赠科研通 4664558
什么是DOI,文献DOI怎么找? 2537377
邀请新用户注册赠送积分活动 1504904
关于科研通互助平台的介绍 1470606