Pelvic multi‐organ segmentation on cone‐beam CT for prostate adaptive radiotherapy

分割 人工智能 锥束ct 计算机科学 医学 特征(语言学) 锥束ct 基本事实 计算机视觉 放射科 计算机断层摄影术 语言学 哲学
作者
Yabo Fu,Yang Lei,Tonghe Wang,Sibo Tian,Pretesh Patel,Ashesh B. Jani,Walter J. Curran,Tian Liu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:47 (8): 3415-3422 被引量:46
标识
DOI:10.1002/mp.14196
摘要

Background and purpose The purpose of this study is to develop a deep learning‐based approach to simultaneously segment five pelvic organs including prostate, bladder, rectum, left and right femoral heads on cone‐beam CT (CBCT), as required elements for prostate adaptive radiotherapy planning. Materials and methods We propose to utilize both CBCT and CBCT‐based synthetic MRI (sMRI) for the segmentation of soft tissue and bony structures, as they provide complementary information for pelvic organ segmentation. CBCT images have superior bony structure contrast and sMRIs have superior soft tissue contrast. Prior to segmentation, sMRI was generated using a cycle‐consistent adversarial networks (CycleGAN), which was trained using paired CBCT‐MR images. To combine the advantages of both CBCT and sMRI, we developed a cross‐modality attention pyramid network with late feature fusion. Our method processes CBCT and sMRI inputs separately to extract CBCT‐specific and sMRI‐specific features prior to combining them in a late‐fusion network for final segmentation. The network was trained and tested using 100 patients’ datasets, with each dataset including the CBCT and manual physician contours. For comparison, we trained another two networks with different network inputs and architectures. The segmentation results were compared to manual contours for evaluations. Results For the proposed method, dice similarity coefficients and mean surface distances between the segmentation results and the ground truth were 0.96 ± 0.03, 0.65 ± 0.67 mm; 0.91 ± 0.08, 0.93 ± 0.96 mm; 0.93 ± 0.04, 0.72 ± 0.61 mm; 0.95 ± 0.05, 1.05 ± 1.40 mm; and 0.95 ± 0.05, 1.08 ± 1.48 mm for bladder, prostate, rectum, left and right femoral heads, respectively. As compared to the other two competing methods, our method has shown superior performance in terms of the segmentation accuracy. Conclusion We developed a deep learning‐based segmentation method to rapidly and accurately segment five pelvic organs simultaneously from daily CBCTs. The proposed method could be used in the clinic to support rapid target and organs‐at‐risk contouring for prostate adaptive radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
御风完成签到 ,获得积分10
2秒前
ED应助holl采纳,获得10
2秒前
顾矜应助Banbor2021采纳,获得20
3秒前
871004188完成签到,获得积分10
3秒前
简单水蓉完成签到,获得积分10
4秒前
4秒前
敏感草丛发布了新的文献求助10
5秒前
猫蒲完成签到 ,获得积分10
5秒前
缥缈的丹翠完成签到 ,获得积分10
5秒前
我是老大应助syc采纳,获得10
6秒前
喵咕嘟完成签到 ,获得积分10
6秒前
缥缈的绿兰完成签到,获得积分10
6秒前
7秒前
华仔应助巧克力大王采纳,获得10
7秒前
潇湘夜雨发布了新的文献求助10
8秒前
桓白白完成签到,获得积分10
11秒前
肥膘肘子发布了新的文献求助10
12秒前
zizilala完成签到,获得积分10
12秒前
12秒前
活力的若风完成签到,获得积分10
13秒前
小姜完成签到,获得积分10
15秒前
16秒前
SciGPT应助干净的夜蓉采纳,获得10
17秒前
冷静傲丝完成签到 ,获得积分10
19秒前
iu发布了新的文献求助10
19秒前
霍霍完成签到 ,获得积分10
20秒前
李爱国应助uui采纳,获得10
20秒前
20秒前
20秒前
小黎完成签到,获得积分10
21秒前
白英完成签到,获得积分10
22秒前
22秒前
隐形曼青应助守仁则阳明采纳,获得10
22秒前
肥膘肘子完成签到,获得积分10
23秒前
23秒前
24秒前
正直凌文发布了新的文献求助10
25秒前
852应助呆桃啵啵奶绿采纳,获得50
25秒前
诚心小兔子完成签到,获得积分10
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979840
求助须知:如何正确求助?哪些是违规求助? 3523885
关于积分的说明 11219083
捐赠科研通 3261375
什么是DOI,文献DOI怎么找? 1800602
邀请新用户注册赠送积分活动 879189
科研通“疑难数据库(出版商)”最低求助积分说明 807202