Evaluation and prediction of transportation resilience under extreme weather events: A diffusion graph convolutional approach

弹性(材料科学) 极端天气 计算机科学 图形 智能交通系统 大数据 数据挖掘 运筹学 运输工程 工程类 理论计算机科学 气候变化 生态学 生物 热力学 物理
作者
Hongwei Wang,Zhong‐Ren Peng,Dongsheng Wang,Yuan Meng,Tianlong Wu,Weili Sun,Qing-Chang Lu
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:115: 102619-102619 被引量:88
标识
DOI:10.1016/j.trc.2020.102619
摘要

Resilience offers a broad social-technical framework to deal with breakdown, response and recovery of transportation networks adapting to various disruptions. Although current research works model and simulate transportation resilience from different perspectives, the real-world resilience of urban road network is still unclear. In this paper, a novel end to end deep learning framework is proposed to estimate and predict the spatiotemporal patterns of transportation resilience under extreme weather events. Diffusion Graph Convolutional Recurrent Neural Network and a dynamic-capturing algorithm of transportation resilience jointly form the backbone of this framework. The presented framework can capture the spatiotemporal dependencies of urban road network and evaluate transportation resilience based on real-world big data, including on-demand ride services data provided by DiDi Chuxing and grid meteorological data. Results show that aggregate data of related precipitation events could be used for transportation resilience modeling under extreme weather events when facing sample imbalance problem due to limited historical disaster data. In terms of observed transportation resilience, transportation network demonstrates different characteristics between sparse network and dense network, as well as general precipitation events and extreme weather events. The response time is double or triple of the recovery time, and an elastic limit exists in the recovery process of network resilience. In terms of resilience prediction, the proposed model outperforms competitors by incorporating topological information and has better predictions of the system performance degradation than other resilience indices. The above results could assist researchers and policy makers clearly understand the real-world resilience of urban road networks in both theory and practice, and take effective responses under emergent disruptive events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LCC完成签到 ,获得积分10
刚刚
小粉丝完成签到,获得积分10
2秒前
3秒前
Zeeki完成签到 ,获得积分10
4秒前
小粉丝发布了新的文献求助10
6秒前
虚心醉蝶完成签到 ,获得积分10
8秒前
13秒前
俏皮元珊完成签到 ,获得积分10
13秒前
煮饭吃Zz完成签到 ,获得积分10
14秒前
喜悦的板凳完成签到 ,获得积分10
15秒前
leungya发布了新的文献求助10
17秒前
糖果完成签到,获得积分10
19秒前
寒冷寻桃完成签到 ,获得积分10
20秒前
彩色半烟完成签到,获得积分10
26秒前
Mendle完成签到 ,获得积分10
27秒前
unowhoiam完成签到 ,获得积分10
32秒前
冯科完成签到 ,获得积分10
38秒前
Muran完成签到,获得积分0
39秒前
42秒前
忆往昔发布了新的文献求助10
48秒前
yihuifa完成签到 ,获得积分10
48秒前
sherry完成签到 ,获得积分10
51秒前
豆豆完成签到 ,获得积分10
52秒前
毕个业完成签到 ,获得积分10
55秒前
忆往昔完成签到,获得积分10
56秒前
乔治完成签到 ,获得积分10
56秒前
酷波er应助Matthew采纳,获得10
1分钟前
Zyl完成签到 ,获得积分10
1分钟前
zho完成签到,获得积分0
1分钟前
1分钟前
Ashley完成签到 ,获得积分10
1分钟前
万能图书馆应助SY采纳,获得10
1分钟前
Oliver完成签到 ,获得积分10
1分钟前
lili完成签到 ,获得积分10
1分钟前
seven发布了新的文献求助10
1分钟前
呵呵喊我完成签到,获得积分10
1分钟前
黄花完成签到 ,获得积分10
1分钟前
1分钟前
竹前家庆发布了新的文献求助30
1分钟前
不知道完成签到,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371357
求助须知:如何正确求助?哪些是违规求助? 2989504
关于积分的说明 8736009
捐赠科研通 2672800
什么是DOI,文献DOI怎么找? 1464212
科研通“疑难数据库(出版商)”最低求助积分说明 677441
邀请新用户注册赠送积分活动 668761