材料科学
电解质
锂(药物)
纳米纤维
化学工程
离子电导率
复合数
快离子导体
甲基丙烯酸酯
聚合物
电化学
枝晶(数学)
电池(电)
电极
复合材料
聚合
工程类
物理
内分泌学
医学
物理化学
功率(物理)
化学
量子力学
数学
几何学
作者
Chaoyi Yan,Pei Zhu,Hao Jia,Zhuang Du,Jiadeng Zhu,Raphael Orenstein,Hui Cheng,Nianqiang Wu,Mahmut Dirican,Xiangwu Zhang
标识
DOI:10.1016/j.ensm.2019.11.018
摘要
Composite solid electrolytes (CSEs), which are composed of inorganic fillers and organic polymers, show improved safety and suppressed lithium dendrite growth in Li-metal batteries, as compared to flammable liquid electrolytes. However, the performance of current CSEs is limited by the agglomeration effect, with low content of inorganic Li+-conducting fillers and ineffective Li+ transport between the inorganic fillers and the polymer matrix. To address these challenges, a new type of CSE composed of silane-modified Li6.28La3Al0.24Zr2O12 ([email protected]) nanofibers and poly(ethylene glycol) diacrylate (PEGDA) is developed. Employment of the silane coupling agent, 3-(trimethoxysilyl)propyl methacrylate, enables the incorporation of a high content of LLAZO nanofibers (up to 70 wt%) with the polymer matrix and results in a well-percolated, three-dimensional LLAZO network fully embedded in the PEGDA matrix. Consequently, the silane coupling agent successfully eliminates the agglomeration effect, which ensures higher ionic conductivity, larger lithium transference number, wider electrochemical stability window, and better cycling stability for [email protected] CSEs. Excellent cycling stability and extraordinarily high rate capability (up to 10C) are demonstrated in the all-solid-state Li-metal batteries with LiFePO4 and high-voltage Li[Ni1/3Mn1/3Co1/3]O2 cathodes at ambient temperature. This novel design of CSEs with [email protected] nanofibers paves the way for a new generation of improved functioning all-solid-state Li-metal batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI