A New Selection Strategy for Decomposition-based Evolutionary Many-Objective Optimization

选择(遗传算法) 计算机科学 分解 进化计算 进化算法 人工智能 数学优化 数学 生物 生态学
作者
Shufen Qin,Chaoli Sun,Yaochu Jin,Lier Lan,Ying Tan
标识
DOI:10.1109/cec.2019.8789966
摘要

It is challenging for optimization algorithms to obtain well converged and diverse optimal solutions in solving many-objective optimization problems, especially when the Pareto front is complex. In this paper, a new selection strategy is proposed for decomposition based evolutionary algorithms for solving many-objective optimization problems. In the proposed method, each individual in a population is assigned to a reference vector at first according to the angle between the objective vector of this individual and the reference vectors to divide the population into some subpopulations. Then for each subpopulation, an ideal point will be specified according to the minimum value of each objective among all solutions in the corresponding subpopulation. The individual in each subpopulation with the maximum ratio of the cosine of the angle between its objective vector and the corresponding reference vector to the distance from the individual to the corresponding ideal point will be selected to be passed to the next generation. The proposed algorithm is compared with five state-of-the-art algorithms on the DTLZ1-7 and WFG3-4 test problems with up to 15 objectives. The experimental results showed the competitiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐白云完成签到,获得积分10
1秒前
1秒前
1秒前
王w发布了新的文献求助10
2秒前
yyyyy完成签到,获得积分10
3秒前
3秒前
大侠发布了新的文献求助10
3秒前
魁梧的乐天完成签到,获得积分20
3秒前
冯度翩翩完成签到,获得积分10
4秒前
科研通AI2S应助satchzhao采纳,获得10
4秒前
jijizz完成签到,获得积分10
5秒前
一一发布了新的文献求助10
5秒前
小马甲应助ChiDaiOLD采纳,获得10
5秒前
5秒前
鳗鱼灵寒发布了新的文献求助10
6秒前
shatang发布了新的文献求助10
6秒前
lesyeuxdexx完成签到 ,获得积分10
8秒前
9秒前
程琳完成签到,获得积分20
10秒前
11秒前
卓哥发布了新的文献求助10
11秒前
科研通AI5应助sansan采纳,获得10
12秒前
12秒前
12秒前
脑洞疼应助杰森斯坦虎采纳,获得10
12秒前
14秒前
15秒前
研友_QQC完成签到,获得积分10
15秒前
NeuroWhite完成签到,获得积分10
15秒前
15秒前
搜索v完成签到,获得积分10
16秒前
liuchuck完成签到 ,获得积分10
16秒前
16秒前
16秒前
猫独秀完成签到,获得积分10
16秒前
18秒前
buno应助yuefeng采纳,获得10
18秒前
yiming完成签到,获得积分10
18秒前
落落发布了新的文献求助10
19秒前
清秋若月完成签到 ,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808