PoPPL: Pedestrian Trajectory Prediction by LSTM With Automatic Route Class Clustering

行人 弹道 计算机科学 聚类分析 路径(计算) 人工智能 国家(计算机科学) 班级(哲学) 机器学习 算法 地理 物理 考古 天文 程序设计语言
作者
Hao Xue,Du Q. Huynh,Mark Reynolds
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (1): 77-90 被引量:49
标识
DOI:10.1109/tnnls.2020.2975837
摘要

Pedestrian path prediction is a very challenging problem because scenes are often crowded or contain obstacles. Existing state-of-the-art long short-term memory (LSTM)-based prediction methods have been mainly focused on analyzing the influence of other people in the neighborhood of each pedestrian while neglecting the role of potential destinations in determining a walking path. In this article, we propose classifying pedestrian trajectories into a number of route classes (RCs) and using them to describe the pedestrian movement patterns. Based on the RCs obtained from trajectory clustering, our algorithm, which we name the prediction of pedestrian paths by LSTM (PoPPL), predicts the destination regions through a bidirectional LSTM classification network in the first stage and then generates trajectories corresponding to the predicted destination regions through one of the three proposed LSTM-based architectures in the second stage. Our algorithm also outputs probabilities of multiple predicted trajectories that head toward the destination regions. We have evaluated PoPPL against other state-of-the-art methods on two public data sets. The results show that our algorithm outperforms other methods and incorporating potential destination prediction improves the trajectory prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CRANE完成签到 ,获得积分10
1秒前
NONO完成签到,获得积分20
1秒前
简单发布了新的文献求助10
3秒前
啊哦完成签到 ,获得积分10
3秒前
4秒前
4秒前
Orange应助zhengly23采纳,获得10
4秒前
Rez完成签到,获得积分10
6秒前
拼搏太英完成签到,获得积分10
8秒前
9秒前
wu完成签到 ,获得积分20
10秒前
Rabbit完成签到,获得积分10
10秒前
江楠发布了新的文献求助10
10秒前
白色花海完成签到,获得积分10
11秒前
脑洞疼应助杨旭采纳,获得10
13秒前
ranj发布了新的文献求助10
13秒前
殷启维发布了新的文献求助10
14秒前
Owen应助简单采纳,获得50
14秒前
丘比特应助Rabbit采纳,获得10
14秒前
14秒前
无私的蛋挞完成签到,获得积分10
17秒前
眼睛大的傲菡完成签到,获得积分10
17秒前
AAAAA完成签到 ,获得积分10
20秒前
Shirly完成签到,获得积分10
21秒前
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
今后应助科研通管家采纳,获得10
21秒前
李爱国应助科研通管家采纳,获得10
21秒前
21秒前
敬老院N号应助科研通管家采纳,获得30
21秒前
充电宝应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
22秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965857
求助须知:如何正确求助?哪些是违规求助? 3511158
关于积分的说明 11156654
捐赠科研通 3245772
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268