PoPPL: Pedestrian Trajectory Prediction by LSTM With Automatic Route Class Clustering

行人 弹道 计算机科学 聚类分析 路径(计算) 人工智能 国家(计算机科学) 班级(哲学) 机器学习 算法 地理 物理 考古 天文 程序设计语言
作者
Hao Xue,Du Q. Huynh,Mark Reynolds
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (1): 77-90 被引量:61
标识
DOI:10.1109/tnnls.2020.2975837
摘要

Pedestrian path prediction is a very challenging problem because scenes are often crowded or contain obstacles. Existing state-of-the-art long short-term memory (LSTM)-based prediction methods have been mainly focused on analyzing the influence of other people in the neighborhood of each pedestrian while neglecting the role of potential destinations in determining a walking path. In this article, we propose classifying pedestrian trajectories into a number of route classes (RCs) and using them to describe the pedestrian movement patterns. Based on the RCs obtained from trajectory clustering, our algorithm, which we name the prediction of pedestrian paths by LSTM (PoPPL), predicts the destination regions through a bidirectional LSTM classification network in the first stage and then generates trajectories corresponding to the predicted destination regions through one of the three proposed LSTM-based architectures in the second stage. Our algorithm also outputs probabilities of multiple predicted trajectories that head toward the destination regions. We have evaluated PoPPL against other state-of-the-art methods on two public data sets. The results show that our algorithm outperforms other methods and incorporating potential destination prediction improves the trajectory prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听的弼发布了新的文献求助10
1秒前
2秒前
3秒前
彭于晏应助沉静早晨采纳,获得30
4秒前
4秒前
星寒驳回了慕青应助
4秒前
隐形曼青应助小稻草人采纳,获得10
4秒前
丘比特应助体贴的嵩采纳,获得10
5秒前
小蘑菇应助xsf采纳,获得10
5秒前
pengcaiqing发布了新的文献求助10
5秒前
嘻嘻完成签到,获得积分10
6秒前
NexusExplorer应助paopao采纳,获得10
6秒前
7秒前
领导范儿应助Chengchao采纳,获得50
7秒前
额威风完成签到,获得积分10
7秒前
个性向卉发布了新的文献求助10
8秒前
8秒前
蕊蕊发布了新的文献求助10
9秒前
骑驴找马发布了新的文献求助10
10秒前
10秒前
7890733发布了新的文献求助10
10秒前
经久发布了新的文献求助10
10秒前
zhangyueyue完成签到,获得积分10
10秒前
avalanche应助好蓝采纳,获得20
11秒前
11秒前
12秒前
13秒前
zx驳回了ccm应助
13秒前
13秒前
13秒前
等待的蛋挞完成签到,获得积分10
13秒前
百川完成签到,获得积分10
13秒前
minmi发布了新的文献求助40
14秒前
大个应助Duuuuu采纳,获得10
14秒前
愚公完成签到 ,获得积分20
14秒前
2011发布了新的文献求助10
15秒前
zhao完成签到,获得积分10
15秒前
默渡发布了新的文献求助30
15秒前
领导范儿应助pengcaiqing采纳,获得10
15秒前
大方嵩完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400477
求助须知:如何正确求助?哪些是违规求助? 4519746
关于积分的说明 14076482
捐赠科研通 4432591
什么是DOI,文献DOI怎么找? 2433726
邀请新用户注册赠送积分活动 1425955
关于科研通互助平台的介绍 1404638