An open-source drug discovery platform enables ultra-large virtual screens

开源 药物发现 计算机科学 药品 计算生物学 生物信息学 软件 生物 操作系统 药理学
作者
Christoph Gorgulla,Andras Boeszoermenyi,Zifu Wang,Patrick D. Fischer,Paul Coote,Krishna Mohan Das,Yehor S. Malets,Dmytro S. Radchenko,Yurii S. Moroz,David A. Scott,Konstantin Fackeldey,Moritz Hoffmann,Iryna Iavniuk,Gerhard Wagner,Haribabu Arthanari
出处
期刊:Nature [Nature Portfolio]
卷期号:580 (7805): 663-668 被引量:505
标识
DOI:10.1038/s41586-020-2117-z
摘要

On average, an approved drug currently costs US$2–3 billion and takes more than 10 years to develop1. In part, this is due to expensive and time-consuming wet-laboratory experiments, poor initial hit compounds and the high attrition rates in the (pre-)clinical phases. Structure-based virtual screening has the potential to mitigate these problems. With structure-based virtual screening, the quality of the hits improves with the number of compounds screened2. However, despite the fact that large databases of compounds exist, the ability to carry out large-scale structure-based virtual screening on computer clusters in an accessible, efficient and flexible manner has remained difficult. Here we describe VirtualFlow, a highly automated and versatile open-source platform with perfect scaling behaviour that is able to prepare and efficiently screen ultra-large libraries of compounds. VirtualFlow is able to use a variety of the most powerful docking programs. Using VirtualFlow, we prepared one of the largest and freely available ready-to-dock ligand libraries, with more than 1.4 billion commercially available molecules. To demonstrate the power of VirtualFlow, we screened more than 1 billion compounds and identified a set of structurally diverse molecules that bind to KEAP1 with submicromolar affinity. One of the lead inhibitors (iKeap1) engages KEAP1 with nanomolar affinity (dissociation constant (Kd) = 114 nM) and disrupts the interaction between KEAP1 and the transcription factor NRF2. This illustrates the potential of VirtualFlow to access vast regions of the chemical space and identify molecules that bind with high affinity to target proteins. VirtualFlow, an open-source drug discovery platform, enables the efficient preparation and virtual screening of ultra-large ligand libraries to identify molecules that bind with high affinity to target proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洗月完成签到,获得积分10
刚刚
61489486发布了新的文献求助10
1秒前
善学以致用应助一一得一采纳,获得10
1秒前
清茶韵心发布了新的文献求助10
3秒前
嘟嘟嘟发布了新的文献求助10
4秒前
DOUDOU发布了新的文献求助10
5秒前
Owen应助松松松采纳,获得30
6秒前
醉后不知天在水完成签到,获得积分10
7秒前
bkagyin应助zjz1采纳,获得10
9秒前
沈海完成签到,获得积分10
9秒前
9秒前
10秒前
嘟嘟嘟完成签到,获得积分20
10秒前
自信的九娘完成签到,获得积分10
11秒前
yao发布了新的文献求助10
13秒前
英俊的铭应助lalaland采纳,获得10
13秒前
无花果应助敏敏采纳,获得10
14秒前
情怀应助DOUDOU采纳,获得10
14秒前
lanlan发布了新的文献求助10
15秒前
15秒前
yunrtghdfgbdf完成签到,获得积分10
15秒前
vivi完成签到,获得积分10
20秒前
21秒前
lanlan完成签到,获得积分10
24秒前
26秒前
28秒前
慕青应助大渡河采纳,获得10
29秒前
小蘑菇应助脑阔药爆炸采纳,获得10
30秒前
30秒前
可爱的函函应助lalaland采纳,获得10
32秒前
35秒前
虚心的笑槐完成签到,获得积分10
35秒前
yanzu应助负责的方盒采纳,获得10
36秒前
benbenca发布了新的文献求助10
39秒前
在水一方应助WD采纳,获得10
41秒前
44秒前
49秒前
乔乔兔给DDD的求助进行了留言
49秒前
GSQ发布了新的文献求助10
51秒前
华仔应助lalaland采纳,获得10
55秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
离子交换膜面电阻的测定方法学 300
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3707920
求助须知:如何正确求助?哪些是违规求助? 3256447
关于积分的说明 9900200
捐赠科研通 2969011
什么是DOI,文献DOI怎么找? 1628271
邀请新用户注册赠送积分活动 772038
科研通“疑难数据库(出版商)”最低求助积分说明 743611