Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques

逻辑回归 随机森林 压力伤 医学 决策树 急诊医学 血压 病历 计算机科学 重症监护医学 机器学习 内科学
作者
Ya‐Han Hu,Yi‐Lien Lee,Ming-Feng Kang,Pei-Ju Lee
出处
期刊:Cin-computers Informatics Nursing [Lippincott Williams & Wilkins]
卷期号:38 (8): 415-423 被引量:28
标识
DOI:10.1097/cin.0000000000000604
摘要

The incidence rate of pressure injury is a critical nursing quality indicator in clinic care; consequently, factors causing pressure injury are diverse and complex. The early prevention of pressure injury and monitoring of these complex high-risk factors are critical to reduce the patients' pain, prevent further surgical treatment, avoid prolonged hospital stay, decrease the risk of wound infection, and lower associated medical costs and expenses. Although a number of risk assessment scales of pressure injury have been adopted in various countries, their criteria are set for specific populations, which may not be suitable for the medical care systems of other countries. This study constructs three prediction models of inpatient pressure injury using machine learning techniques, including decision tree, logistic regression, and random forest. A total of 11 838 inpatient records were collected, and 30 sets of training samples were adopted for data analysis in the experiment. The experimental results and evaluations of the models suggest that the prediction model built using random forest had most favorable classification performance of 0.845. The critical risk factors for pressure injury identified in this study were skin integrity, systolic blood pressure, expression ability, capillary refill time, and level of consciousness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助迷人依白采纳,获得10
刚刚
1秒前
豆豆完成签到,获得积分10
1秒前
1秒前
orixero应助sisi采纳,获得10
1秒前
yin发布了新的文献求助10
1秒前
情怀应助wfy采纳,获得10
2秒前
灰灰12138发布了新的文献求助10
2秒前
阿治发布了新的文献求助10
3秒前
3秒前
小茗同学发布了新的文献求助10
3秒前
SciGPT应助张青青采纳,获得10
4秒前
4秒前
5秒前
Denvir完成签到 ,获得积分10
5秒前
Yara.H发布了新的文献求助10
6秒前
ASSA完成签到,获得积分10
6秒前
研友_8DAv0L发布了新的文献求助10
6秒前
桐桐应助鲁滨逊采纳,获得10
7秒前
7秒前
7秒前
慕青应助妖孽的二狗采纳,获得10
7秒前
今后应助第三采纳,获得10
7秒前
Ava应助mmssdd采纳,获得10
8秒前
8秒前
zxh完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
10秒前
月儿发布了新的文献求助10
10秒前
MJJ发布了新的文献求助10
10秒前
小茗同学完成签到,获得积分20
10秒前
不能吃太饱完成签到,获得积分10
11秒前
11秒前
yin完成签到,获得积分10
11秒前
Peyton Why完成签到,获得积分10
11秒前
852应助研友_ZAyQeZ采纳,获得10
12秒前
12秒前
打打应助典雅雁梅采纳,获得10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009871
求助须知:如何正确求助?哪些是违规求助? 3549812
关于积分的说明 11303839
捐赠科研通 3284342
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886393
科研通“疑难数据库(出版商)”最低求助积分说明 811406