Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques

逻辑回归 随机森林 压力伤 医学 决策树 急诊医学 血压 病历 计算机科学 重症监护医学 机器学习 内科学
作者
Ya‐Han Hu,Yi‐Lien Lee,Ming-Feng Kang,Pei-Ju Lee
出处
期刊:Cin-computers Informatics Nursing [Lippincott Williams & Wilkins]
卷期号:38 (8): 415-423 被引量:28
标识
DOI:10.1097/cin.0000000000000604
摘要

The incidence rate of pressure injury is a critical nursing quality indicator in clinic care; consequently, factors causing pressure injury are diverse and complex. The early prevention of pressure injury and monitoring of these complex high-risk factors are critical to reduce the patients' pain, prevent further surgical treatment, avoid prolonged hospital stay, decrease the risk of wound infection, and lower associated medical costs and expenses. Although a number of risk assessment scales of pressure injury have been adopted in various countries, their criteria are set for specific populations, which may not be suitable for the medical care systems of other countries. This study constructs three prediction models of inpatient pressure injury using machine learning techniques, including decision tree, logistic regression, and random forest. A total of 11 838 inpatient records were collected, and 30 sets of training samples were adopted for data analysis in the experiment. The experimental results and evaluations of the models suggest that the prediction model built using random forest had most favorable classification performance of 0.845. The critical risk factors for pressure injury identified in this study were skin integrity, systolic blood pressure, expression ability, capillary refill time, and level of consciousness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6.1应助娜娜采纳,获得10
2秒前
4秒前
4秒前
SONGYEZI完成签到,获得积分0
6秒前
烟花应助xnz采纳,获得30
6秒前
7秒前
9秒前
9秒前
10秒前
SciKid524完成签到 ,获得积分10
11秒前
11秒前
Berne发布了新的文献求助10
11秒前
12秒前
斯文败类应助xh采纳,获得10
12秒前
ljw完成签到 ,获得积分10
12秒前
SciGPT应助1212采纳,获得10
12秒前
清脆南霜完成签到,获得积分10
13秒前
13秒前
bunny发布了新的文献求助10
13秒前
Owen应助伶俐鹤轩采纳,获得20
14秒前
小二郎应助王蕊采纳,获得10
14秒前
14秒前
杨小鸿发布了新的文献求助10
15秒前
dddd发布了新的文献求助10
17秒前
Nara2021发布了新的文献求助10
19秒前
20秒前
183完成签到,获得积分10
21秒前
石头爱科研完成签到,获得积分10
21秒前
22秒前
科研通AI6.1应助bunny采纳,获得10
22秒前
若水完成签到,获得积分0
22秒前
23秒前
cherish完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助30
24秒前
鲨鱼游泳教练完成签到,获得积分10
26秒前
28秒前
29秒前
lsrlsr发布了新的文献求助10
29秒前
华仔应助傻傻的雅寒采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978