Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques

逻辑回归 随机森林 压力伤 医学 决策树 急诊医学 血压 病历 计算机科学 重症监护医学 机器学习 内科学
作者
Ya‐Han Hu,Yi‐Lien Lee,Ming-Feng Kang,Pei-Ju Lee
出处
期刊:Cin-computers Informatics Nursing [Lippincott Williams & Wilkins]
卷期号:38 (8): 415-423 被引量:28
标识
DOI:10.1097/cin.0000000000000604
摘要

The incidence rate of pressure injury is a critical nursing quality indicator in clinic care; consequently, factors causing pressure injury are diverse and complex. The early prevention of pressure injury and monitoring of these complex high-risk factors are critical to reduce the patients' pain, prevent further surgical treatment, avoid prolonged hospital stay, decrease the risk of wound infection, and lower associated medical costs and expenses. Although a number of risk assessment scales of pressure injury have been adopted in various countries, their criteria are set for specific populations, which may not be suitable for the medical care systems of other countries. This study constructs three prediction models of inpatient pressure injury using machine learning techniques, including decision tree, logistic regression, and random forest. A total of 11 838 inpatient records were collected, and 30 sets of training samples were adopted for data analysis in the experiment. The experimental results and evaluations of the models suggest that the prediction model built using random forest had most favorable classification performance of 0.845. The critical risk factors for pressure injury identified in this study were skin integrity, systolic blood pressure, expression ability, capillary refill time, and level of consciousness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
赵琪完成签到,获得积分10
2秒前
daniel完成签到,获得积分10
3秒前
duduguai完成签到,获得积分10
3秒前
tyh完成签到,获得积分10
4秒前
oneonlycrown完成签到,获得积分10
4秒前
大模型应助Maestro_S采纳,获得10
5秒前
ang完成签到,获得积分10
5秒前
xinyuli完成签到,获得积分10
5秒前
Aspirin发布了新的文献求助10
5秒前
SH123完成签到 ,获得积分0
5秒前
6秒前
菜鸟发布了新的文献求助10
6秒前
芝麻完成签到,获得积分10
7秒前
midori完成签到,获得积分10
7秒前
阡陌完成签到,获得积分10
7秒前
莽哥发布了新的文献求助10
7秒前
7秒前
穷光蛋完成签到 ,获得积分10
7秒前
雪球完成签到 ,获得积分10
7秒前
科研通AI6应助xinyuli采纳,获得30
9秒前
9秒前
jason0023完成签到,获得积分10
10秒前
咕咕完成签到,获得积分10
10秒前
一一完成签到 ,获得积分10
10秒前
小黑马完成签到,获得积分10
10秒前
DSUNNY发布了新的文献求助10
11秒前
哈哈完成签到 ,获得积分10
11秒前
所所应助轻松的鸿煊采纳,获得10
12秒前
12秒前
十勤完成签到,获得积分10
16秒前
神经元完成签到 ,获得积分10
16秒前
Youx发布了新的文献求助30
17秒前
NexusExplorer应助牛牛采纳,获得10
17秒前
CodeCraft应助苦逼的科研汪采纳,获得10
17秒前
18秒前
18秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284055
求助须知:如何正确求助?哪些是违规求助? 4437688
关于积分的说明 13814537
捐赠科研通 4318612
什么是DOI,文献DOI怎么找? 2370475
邀请新用户注册赠送积分活动 1365895
关于科研通互助平台的介绍 1329363