亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques

逻辑回归 随机森林 压力伤 医学 决策树 急诊医学 血压 病历 计算机科学 重症监护医学 机器学习 内科学
作者
Ya‐Han Hu,Yi‐Lien Lee,Ming-Feng Kang,Pei-Ju Lee
出处
期刊:Cin-computers Informatics Nursing [Lippincott Williams & Wilkins]
卷期号:38 (8): 415-423 被引量:28
标识
DOI:10.1097/cin.0000000000000604
摘要

The incidence rate of pressure injury is a critical nursing quality indicator in clinic care; consequently, factors causing pressure injury are diverse and complex. The early prevention of pressure injury and monitoring of these complex high-risk factors are critical to reduce the patients' pain, prevent further surgical treatment, avoid prolonged hospital stay, decrease the risk of wound infection, and lower associated medical costs and expenses. Although a number of risk assessment scales of pressure injury have been adopted in various countries, their criteria are set for specific populations, which may not be suitable for the medical care systems of other countries. This study constructs three prediction models of inpatient pressure injury using machine learning techniques, including decision tree, logistic regression, and random forest. A total of 11 838 inpatient records were collected, and 30 sets of training samples were adopted for data analysis in the experiment. The experimental results and evaluations of the models suggest that the prediction model built using random forest had most favorable classification performance of 0.845. The critical risk factors for pressure injury identified in this study were skin integrity, systolic blood pressure, expression ability, capillary refill time, and level of consciousness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
朴素寄文发布了新的文献求助10
8秒前
9秒前
14秒前
星燃发布了新的文献求助10
15秒前
20秒前
25秒前
25秒前
宝宝熊的熊宝宝完成签到,获得积分10
27秒前
29秒前
扣子发布了新的文献求助30
30秒前
Catching发布了新的文献求助10
31秒前
atao发布了新的文献求助10
33秒前
Criminology34应助标致金毛采纳,获得10
34秒前
粽子完成签到,获得积分10
37秒前
无花果应助Catching采纳,获得10
41秒前
atao完成签到,获得积分10
42秒前
过时的凌蝶应助天真傲之采纳,获得10
54秒前
1分钟前
sensen发布了新的文献求助10
1分钟前
Criminology34举报月光入梦求助涉嫌违规
1分钟前
1分钟前
达不溜搽发布了新的文献求助10
1分钟前
sailingluwl完成签到,获得积分10
1分钟前
1分钟前
1分钟前
王金煜发布了新的文献求助10
1分钟前
桐桐应助王金煜采纳,获得30
1分钟前
Yuanyuan发布了新的文献求助10
1分钟前
1分钟前
星燃发布了新的文献求助10
1分钟前
六六完成签到 ,获得积分10
1分钟前
1分钟前
糖诗发布了新的文献求助10
1分钟前
受伤纲完成签到 ,获得积分10
1分钟前
安静书雁发布了新的文献求助30
1分钟前
诚心山灵完成签到,获得积分10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568155
求助须知:如何正确求助?哪些是违规求助? 4652598
关于积分的说明 14701831
捐赠科研通 4594464
什么是DOI,文献DOI怎么找? 2520964
邀请新用户注册赠送积分活动 1492847
关于科研通互助平台的介绍 1463696