已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

RDMN: A Relative Density Measure Based on MST Neighborhood for Clustering Multi-Scale Datasets

聚类分析 计算机科学 最小生成树 稳健性(进化) 模式识别(心理学) 确定数据集中的群集数 数据挖掘 相关聚类 单连锁聚类 度量(数据仓库) 图形 人工智能 CURE数据聚类算法 算法 理论计算机科学 生物化学 化学 基因
作者
Gaurav Mishra,Sraban Kumar Mohanty
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:34 (1): 419-432 被引量:13
标识
DOI:10.1109/tkde.2020.2982400
摘要

Density based clustering techniques discover the intrinsic clusters by separating the regions present in the dataset as high- and low-density regions based on their neighborhood information. They are popular and effective because they identify the clusters of arbitrary shapes and automatically detect the number of clusters. However, the distribution patterns of clusters are natural and complex in the datasets generated by different applications. Most of the existing density based clustering algorithms are not suitable to identify the clusters of complex pattern with large variation in density because they use fixed global parameters to compute the density of data points. Minimum spanning tree (MST) of a complete graph easily captures the intrinsic neighborhood information of different characteristic datasets without any user defined parameters. We propose a new Relative Density measure based on MST Neighborhood graph (RDMN) to compute the density of data points. Based on this new density measure, we propose a clustering technique to identify the clusters of complex patterns with varying density. The MST neighborhood graph is partitioned into dense regions based on the density level of data points to retain the shape of clusters. Finally, these regions are merged into actual clusters using MST based clustering technique. To the best of our knowledge, the proposed RDMN is the first MST based density measure for capturing the intrinsic neighborhood without any user defined parameter. Experimental results on synthetic and real datasets demonstrate that the proposed algorithm outperforms other popular clustering techniques in terms of cluster quality, accuracy, and robustness against noise and detecting the outliers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lhtyzcg完成签到,获得积分10
4秒前
隐形曼青应助hellomoon采纳,获得10
6秒前
7秒前
jawa完成签到 ,获得积分10
10秒前
传奇3应助Dester采纳,获得10
11秒前
LDDLleor完成签到,获得积分10
12秒前
12秒前
SARON完成签到 ,获得积分10
12秒前
13秒前
王山而发布了新的文献求助20
17秒前
周沛沛发布了新的文献求助10
17秒前
mr完成签到 ,获得积分10
22秒前
Ancoes完成签到 ,获得积分10
23秒前
周沛沛完成签到,获得积分10
24秒前
25秒前
Ava应助洁洁子采纳,获得10
28秒前
ding应助pepper采纳,获得10
29秒前
李键刚完成签到 ,获得积分10
29秒前
29秒前
zlq发布了新的文献求助10
30秒前
科研通AI6应助科研通管家采纳,获得10
33秒前
Akim应助科研通管家采纳,获得10
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
搜集达人应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
小蘑菇应助科研通管家采纳,获得10
33秒前
桐桐应助邱邱采纳,获得10
33秒前
我不知道该叫啥完成签到,获得积分10
34秒前
鱼yu上学完成签到,获得积分10
39秒前
今后应助逃亡的小狗采纳,获得10
39秒前
无聊完成签到 ,获得积分10
40秒前
42秒前
噼里啪啦发布了新的文献求助10
43秒前
在水一方应助zlq采纳,获得10
43秒前
Joeswith完成签到,获得积分10
44秒前
共享精神应助yiyi采纳,获得10
45秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581117
求助须知:如何正确求助?哪些是违规求助? 3999097
关于积分的说明 12380652
捐赠科研通 3673647
什么是DOI,文献DOI怎么找? 2024682
邀请新用户注册赠送积分活动 1058541
科研通“疑难数据库(出版商)”最低求助积分说明 945240