RDMN: A Relative Density Measure Based on MST Neighborhood for Clustering Multi-Scale Datasets

聚类分析 计算机科学 最小生成树 稳健性(进化) 模式识别(心理学) 确定数据集中的群集数 数据挖掘 相关聚类 单连锁聚类 度量(数据仓库) 图形 人工智能 CURE数据聚类算法 算法 理论计算机科学 基因 生物化学 化学
作者
Gaurav Mishra,Sraban Kumar Mohanty
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:34 (1): 419-432 被引量:13
标识
DOI:10.1109/tkde.2020.2982400
摘要

Density based clustering techniques discover the intrinsic clusters by separating the regions present in the dataset as high- and low-density regions based on their neighborhood information. They are popular and effective because they identify the clusters of arbitrary shapes and automatically detect the number of clusters. However, the distribution patterns of clusters are natural and complex in the datasets generated by different applications. Most of the existing density based clustering algorithms are not suitable to identify the clusters of complex pattern with large variation in density because they use fixed global parameters to compute the density of data points. Minimum spanning tree (MST) of a complete graph easily captures the intrinsic neighborhood information of different characteristic datasets without any user defined parameters. We propose a new Relative Density measure based on MST Neighborhood graph (RDMN) to compute the density of data points. Based on this new density measure, we propose a clustering technique to identify the clusters of complex patterns with varying density. The MST neighborhood graph is partitioned into dense regions based on the density level of data points to retain the shape of clusters. Finally, these regions are merged into actual clusters using MST based clustering technique. To the best of our knowledge, the proposed RDMN is the first MST based density measure for capturing the intrinsic neighborhood without any user defined parameter. Experimental results on synthetic and real datasets demonstrate that the proposed algorithm outperforms other popular clustering techniques in terms of cluster quality, accuracy, and robustness against noise and detecting the outliers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俗人完成签到,获得积分10
2秒前
Tizzy发布了新的文献求助10
2秒前
caicai完成签到,获得积分20
3秒前
3秒前
海不扬波发布了新的文献求助10
4秒前
Eber完成签到,获得积分10
4秒前
FashionBoy应助lin666采纳,获得10
4秒前
aaa发布了新的文献求助10
4秒前
D.D.完成签到,获得积分10
5秒前
李爱国应助畅快访蕊采纳,获得10
5秒前
5秒前
玩命的鹤完成签到 ,获得积分10
5秒前
7秒前
7秒前
caicai发布了新的文献求助10
7秒前
SY15732023811完成签到 ,获得积分10
8秒前
10秒前
aaa完成签到,获得积分10
10秒前
DamenS发布了新的文献求助10
10秒前
科研小狗完成签到,获得积分10
11秒前
无奈的语风完成签到,获得积分20
11秒前
SHENLE发布了新的文献求助10
11秒前
11秒前
12秒前
XCai完成签到,获得积分10
12秒前
甜橙汁发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
海不扬波完成签到,获得积分10
14秒前
大意完成签到 ,获得积分10
14秒前
西瓜完成签到,获得积分10
14秒前
14秒前
tyc完成签到,获得积分10
14秒前
坚定的谷秋完成签到,获得积分10
15秒前
16秒前
思敏发布了新的文献求助10
16秒前
16秒前
Clancy发布了新的文献求助10
17秒前
gxq完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954228
求助须知:如何正确求助?哪些是违规求助? 3500273
关于积分的说明 11098748
捐赠科研通 3230782
什么是DOI,文献DOI怎么找? 1786143
邀请新用户注册赠送积分活动 869824
科研通“疑难数据库(出版商)”最低求助积分说明 801638