RDMN: A Relative Density Measure Based on MST Neighborhood for Clustering Multi-Scale Datasets

聚类分析 计算机科学 最小生成树 稳健性(进化) 模式识别(心理学) 确定数据集中的群集数 数据挖掘 相关聚类 单连锁聚类 度量(数据仓库) 图形 人工智能 CURE数据聚类算法 算法 理论计算机科学 基因 生物化学 化学
作者
Gaurav Mishra,Sraban Kumar Mohanty
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:34 (1): 419-432 被引量:13
标识
DOI:10.1109/tkde.2020.2982400
摘要

Density based clustering techniques discover the intrinsic clusters by separating the regions present in the dataset as high- and low-density regions based on their neighborhood information. They are popular and effective because they identify the clusters of arbitrary shapes and automatically detect the number of clusters. However, the distribution patterns of clusters are natural and complex in the datasets generated by different applications. Most of the existing density based clustering algorithms are not suitable to identify the clusters of complex pattern with large variation in density because they use fixed global parameters to compute the density of data points. Minimum spanning tree (MST) of a complete graph easily captures the intrinsic neighborhood information of different characteristic datasets without any user defined parameters. We propose a new Relative Density measure based on MST Neighborhood graph (RDMN) to compute the density of data points. Based on this new density measure, we propose a clustering technique to identify the clusters of complex patterns with varying density. The MST neighborhood graph is partitioned into dense regions based on the density level of data points to retain the shape of clusters. Finally, these regions are merged into actual clusters using MST based clustering technique. To the best of our knowledge, the proposed RDMN is the first MST based density measure for capturing the intrinsic neighborhood without any user defined parameter. Experimental results on synthetic and real datasets demonstrate that the proposed algorithm outperforms other popular clustering techniques in terms of cluster quality, accuracy, and robustness against noise and detecting the outliers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kingwill应助科研通管家采纳,获得20
刚刚
在水一方应助科研通管家采纳,获得10
1秒前
1秒前
wanci应助科研通管家采纳,获得10
1秒前
Ky_Mac应助科研通管家采纳,获得30
1秒前
kingwill应助科研通管家采纳,获得20
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
Ky_Mac应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
蜀安应助科研通管家采纳,获得30
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
小郭子应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
wy.he应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
chen应助科研通管家采纳,获得10
2秒前
wy.he应助科研通管家采纳,获得10
2秒前
小郭子应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得30
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
小郭子应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
吴溪月发布了新的文献求助10
4秒前
轨迹应助白山茶采纳,获得30
4秒前
一灯大师发布了新的文献求助10
4秒前
戴院士发布了新的文献求助10
5秒前
1234完成签到 ,获得积分10
6秒前
不知完成签到,获得积分10
6秒前
忧郁平蝶完成签到,获得积分10
7秒前
牛哥发布了新的文献求助10
8秒前
陈寯发布了新的文献求助50
8秒前
Lampe应助yan采纳,获得30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742035
求助须知:如何正确求助?哪些是违规求助? 5405283
关于积分的说明 15343770
捐赠科研通 4883510
什么是DOI,文献DOI怎么找? 2625039
邀请新用户注册赠送积分活动 1573909
关于科研通互助平台的介绍 1530861