RDMN: A Relative Density Measure Based on MST Neighborhood for Clustering Multi-Scale Datasets

聚类分析 计算机科学 最小生成树 稳健性(进化) 模式识别(心理学) 确定数据集中的群集数 数据挖掘 相关聚类 单连锁聚类 度量(数据仓库) 图形 人工智能 CURE数据聚类算法 算法 理论计算机科学 基因 生物化学 化学
作者
Gaurav Mishra,Sraban Kumar Mohanty
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:34 (1): 419-432 被引量:13
标识
DOI:10.1109/tkde.2020.2982400
摘要

Density based clustering techniques discover the intrinsic clusters by separating the regions present in the dataset as high- and low-density regions based on their neighborhood information. They are popular and effective because they identify the clusters of arbitrary shapes and automatically detect the number of clusters. However, the distribution patterns of clusters are natural and complex in the datasets generated by different applications. Most of the existing density based clustering algorithms are not suitable to identify the clusters of complex pattern with large variation in density because they use fixed global parameters to compute the density of data points. Minimum spanning tree (MST) of a complete graph easily captures the intrinsic neighborhood information of different characteristic datasets without any user defined parameters. We propose a new Relative Density measure based on MST Neighborhood graph (RDMN) to compute the density of data points. Based on this new density measure, we propose a clustering technique to identify the clusters of complex patterns with varying density. The MST neighborhood graph is partitioned into dense regions based on the density level of data points to retain the shape of clusters. Finally, these regions are merged into actual clusters using MST based clustering technique. To the best of our knowledge, the proposed RDMN is the first MST based density measure for capturing the intrinsic neighborhood without any user defined parameter. Experimental results on synthetic and real datasets demonstrate that the proposed algorithm outperforms other popular clustering techniques in terms of cluster quality, accuracy, and robustness against noise and detecting the outliers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈隆完成签到,获得积分10
1秒前
Yanglk发布了新的文献求助10
2秒前
NexusExplorer应助小李同学采纳,获得10
2秒前
科目三应助芝麻采纳,获得10
3秒前
如意的尔竹完成签到 ,获得积分10
3秒前
4秒前
浮游应助lisier采纳,获得10
5秒前
5秒前
亮亮完成签到,获得积分10
5秒前
吴博文发布了新的文献求助10
6秒前
6秒前
bkagyin应助快看不到太阳采纳,获得10
6秒前
7秒前
琪凯定理完成签到,获得积分10
7秒前
扶南发布了新的文献求助10
9秒前
9秒前
Refuel发布了新的文献求助10
10秒前
小二郎应助cainiao采纳,获得10
11秒前
11秒前
12秒前
JamesPei应助吴博文采纳,获得10
13秒前
研友_方达完成签到,获得积分10
14秒前
小李发布了新的文献求助10
15秒前
飞飞鱼完成签到,获得积分10
15秒前
叁壹粑粑发布了新的文献求助30
16秒前
酶没美镁完成签到,获得积分10
17秒前
亢kxh完成签到,获得积分10
17秒前
17秒前
快看不到太阳完成签到,获得积分20
18秒前
18秒前
颖宝老公完成签到,获得积分0
19秒前
Yanglk完成签到,获得积分10
19秒前
19秒前
li关闭了li文献求助
20秒前
20秒前
依依完成签到,获得积分10
20秒前
BY完成签到,获得积分20
20秒前
而发的完成签到,获得积分10
21秒前
W昂发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429