Applications of machine learning in metal-organic frameworks

工作流程 多样性(控制论) 领域(数学) 数据科学 人工智能 化学 计算机科学 数据库 数学 纯数学
作者
Sanggyu Chong,Sangwon Lee,Baekjun Kim,Jihan Kim
出处
期刊:Coordination Chemistry Reviews [Elsevier BV]
卷期号:423: 213487-213487 被引量:183
标识
DOI:10.1016/j.ccr.2020.213487
摘要

Machine learning (ML) is the field of computer science where computing systems are trained to perform an analysis of provided data to reveal previously unseen trends and patterns that allow accurate predictions. ML methods have drastically transformed the way scientific research is conducted, making significant contributions in a variety of research fields ranging from natural language processing to drug discovery and materials design. With an abundance of discovered structures and their performance data for various application fields, metal–organic frameworks (MOFs) would undoubtedly benefit from the integration of ML methods for their design and development. In this review, we provide a complete overview of how ML methods can be effectively utilized for MOF research. Various descriptors and representations of MOFs suitable for the ML workflow are first discussed. Then, recent research progresses in which novel ML methods are used to predict various material properties or even design new MOF structures are presented. As many more MOFs are discovered and utilized for various applications, ML will play a much bigger role in their research and development. As such, this review aims to provide readers with basic insights required to comprehend ML-based MOF research, and to help conduct those of their own in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
underoos完成签到,获得积分10
刚刚
Victor66685应助111采纳,获得30
2秒前
2秒前
cyy完成签到,获得积分10
3秒前
3秒前
underoos发布了新的文献求助10
4秒前
张不张发布了新的文献求助10
4秒前
4秒前
alian发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
she发布了新的文献求助10
4秒前
拼搏的韭菜完成签到,获得积分10
5秒前
优美巨人发布了新的文献求助10
5秒前
Akim应助cc采纳,获得10
6秒前
6秒前
星辰大海应助清欢采纳,获得10
7秒前
斯文败类应助小冯采纳,获得10
7秒前
细心蚂蚁发布了新的文献求助10
7秒前
SunOSun发布了新的文献求助30
8秒前
学术laji发布了新的文献求助10
8秒前
8秒前
10秒前
科研通AI5应助xiaoyu123采纳,获得10
10秒前
10秒前
情怀应助awwww采纳,获得10
11秒前
neckerzhu发布了新的文献求助10
11秒前
紧张的惜寒完成签到,获得积分10
13秒前
13秒前
13秒前
干涸的脑瓜完成签到 ,获得积分10
13秒前
13秒前
14秒前
16秒前
nns完成签到,获得积分10
16秒前
17秒前
wml完成签到,获得积分10
17秒前
cc完成签到,获得积分10
17秒前
oudian发布了新的文献求助10
17秒前
17秒前
子涵流年发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934228
求助须知:如何正确求助?哪些是违规求助? 4202186
关于积分的说明 13056265
捐赠科研通 3976412
什么是DOI,文献DOI怎么找? 2178969
邀请新用户注册赠送积分活动 1195288
关于科研通互助平台的介绍 1106655