Using DMSP/OLS nighttime light data and K–means method to identify urban–rural fringe of megacities

地理 特大城市 气象学 环境科学 遥感 经济 经济
作者
Zhao Feng,Jian Peng,Jian Wu
出处
期刊:Habitat international [Elsevier]
卷期号:103: 102227-102227 被引量:76
标识
DOI:10.1016/j.habitatint.2020.102227
摘要

Urban–rural fringe, which form a link between urban construction areas and rural hinterland, is the most sensitive area to urbanization. Its accurate identification is of great significance for the further study of urbanization related socio–economic and eco-environmental changes in the perspective of urban–rural contrast. Previous studies of urban–rural fringe identification had problems with narrow scope of application, low efficiency of identification, and the results were greatly influenced by subjective factors. Nighttime light, as an important product of human activities, can reflect the gradient changes of urban–rural landscapes, and can be used to identify urban–rural fringes. Therefore, a K–means–based approach was developed using Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data. Taking Beijing City as an example, in this study we delineated its urban–rural fringes. Our results indicate that a ring–shaped urban–rural fringe surrounds urban central areas, with an area of 3712 km2, which is mainly located in new urban development zones. Inside the urban–rural fringe, lights fluctuated obviously, and the fluctuation index was up to 76.75. Meanwhile, the combination of nighttime light intensity and light fluctuation had better performance than that when they were considered separately in the identification of urban–rural fringes. Furthermore, the K–means algorithm based on nighttime light found more details related to urban–rural fringes when compared with the traditional mutation detection method. This study provided an approach to identifying urban–rural fringes accurately and objectively, which is conducive to the study of eco–environmental effects in the process of urbanization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Evied发布了新的文献求助10
刚刚
淡然丹寒完成签到,获得积分10
刚刚
曹宇哲完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
斯文败类应助谨慎的雨梅采纳,获得10
1秒前
2秒前
Tmac发布了新的文献求助30
2秒前
袁子晴发布了新的文献求助10
2秒前
2秒前
飘逸书易完成签到,获得积分20
2秒前
3秒前
3秒前
李健应助xiaoliu采纳,获得10
3秒前
华仔应助嘻嘻采纳,获得10
3秒前
香蕉诗蕊举报Chency求助涉嫌违规
3秒前
陈辰晨完成签到,获得积分20
4秒前
花05完成签到,获得积分10
4秒前
科目三应助吴若魔采纳,获得10
4秒前
xcf完成签到,获得积分10
5秒前
英俊的铭应助稳重的蛋挞采纳,获得10
5秒前
5秒前
星辰大海应助刘刘采纳,获得10
5秒前
6秒前
6秒前
7秒前
Hoxi发布了新的文献求助10
7秒前
fd163c发布了新的文献求助10
8秒前
烟雨江南完成签到,获得积分10
8秒前
科学家发布了新的文献求助10
8秒前
tcf发布了新的文献求助10
8秒前
8秒前
舒适代丝完成签到 ,获得积分10
8秒前
benchow完成签到,获得积分10
8秒前
zhouqing完成签到,获得积分10
8秒前
充电宝应助没有熬夜采纳,获得10
8秒前
curryif发布了新的文献求助10
8秒前
Jing完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614639
求助须知:如何正确求助?哪些是违规求助? 4699568
关于积分的说明 14904120
捐赠科研通 4739859
什么是DOI,文献DOI怎么找? 2547689
邀请新用户注册赠送积分活动 1511511
关于科研通互助平台的介绍 1473687