Using DMSP/OLS nighttime light data and K–means method to identify urban–rural fringe of megacities

地理 特大城市 气象学 环境科学 遥感 经济 经济
作者
Zhao Feng,Jian Peng,Jian Wu
出处
期刊:Habitat international [Elsevier]
卷期号:103: 102227-102227 被引量:76
标识
DOI:10.1016/j.habitatint.2020.102227
摘要

Urban–rural fringe, which form a link between urban construction areas and rural hinterland, is the most sensitive area to urbanization. Its accurate identification is of great significance for the further study of urbanization related socio–economic and eco-environmental changes in the perspective of urban–rural contrast. Previous studies of urban–rural fringe identification had problems with narrow scope of application, low efficiency of identification, and the results were greatly influenced by subjective factors. Nighttime light, as an important product of human activities, can reflect the gradient changes of urban–rural landscapes, and can be used to identify urban–rural fringes. Therefore, a K–means–based approach was developed using Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data. Taking Beijing City as an example, in this study we delineated its urban–rural fringes. Our results indicate that a ring–shaped urban–rural fringe surrounds urban central areas, with an area of 3712 km2, which is mainly located in new urban development zones. Inside the urban–rural fringe, lights fluctuated obviously, and the fluctuation index was up to 76.75. Meanwhile, the combination of nighttime light intensity and light fluctuation had better performance than that when they were considered separately in the identification of urban–rural fringes. Furthermore, the K–means algorithm based on nighttime light found more details related to urban–rural fringes when compared with the traditional mutation detection method. This study provided an approach to identifying urban–rural fringes accurately and objectively, which is conducive to the study of eco–environmental effects in the process of urbanization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助zyq采纳,获得10
1秒前
1秒前
1秒前
斯文败类应助自由的筝采纳,获得10
2秒前
蓝天发布了新的文献求助10
2秒前
烂漫耳机发布了新的文献求助10
2秒前
Akim应助奔跑西木采纳,获得10
2秒前
2秒前
复杂豁完成签到,获得积分10
2秒前
2秒前
3秒前
zqx完成签到,获得积分10
3秒前
3秒前
3秒前
利好完成签到 ,获得积分10
3秒前
王莹莹发布了新的文献求助10
4秒前
4秒前
4秒前
坚果完成签到,获得积分20
4秒前
5秒前
hy发布了新的文献求助10
5秒前
时尚初南发布了新的文献求助10
5秒前
5秒前
6秒前
蜜桃乌龙发布了新的文献求助10
6秒前
6秒前
小桃子完成签到,获得积分10
6秒前
Avvei完成签到,获得积分10
6秒前
叶子完成签到,获得积分10
7秒前
zk812926完成签到,获得积分20
7秒前
7秒前
7秒前
芸沐发布了新的文献求助10
8秒前
nisha发布了新的文献求助10
8秒前
傲娇十八发布了新的文献求助10
9秒前
王彦林发布了新的文献求助10
9秒前
阳光水绿发布了新的文献求助10
9秒前
SciGPT应助认真初之采纳,获得30
9秒前
9秒前
JY发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836