Using DMSP/OLS nighttime light data and K–means method to identify urban–rural fringe of megacities

城市化 地理 农村地区 特大城市 光污染 鉴定(生物学) 北京 市区 城市气候 城市群 环境科学 经济地理学 经济增长 中国 生态学 医学 物理 考古 病理 光学 经济 生物
作者
Zhao Feng,Jian Peng,Jian Wu
出处
期刊:Habitat international [Elsevier]
卷期号:103: 102227-102227 被引量:68
标识
DOI:10.1016/j.habitatint.2020.102227
摘要

Urban–rural fringe, which form a link between urban construction areas and rural hinterland, is the most sensitive area to urbanization. Its accurate identification is of great significance for the further study of urbanization related socio–economic and eco-environmental changes in the perspective of urban–rural contrast. Previous studies of urban–rural fringe identification had problems with narrow scope of application, low efficiency of identification, and the results were greatly influenced by subjective factors. Nighttime light, as an important product of human activities, can reflect the gradient changes of urban–rural landscapes, and can be used to identify urban–rural fringes. Therefore, a K–means–based approach was developed using Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data. Taking Beijing City as an example, in this study we delineated its urban–rural fringes. Our results indicate that a ring–shaped urban–rural fringe surrounds urban central areas, with an area of 3712 km2, which is mainly located in new urban development zones. Inside the urban–rural fringe, lights fluctuated obviously, and the fluctuation index was up to 76.75. Meanwhile, the combination of nighttime light intensity and light fluctuation had better performance than that when they were considered separately in the identification of urban–rural fringes. Furthermore, the K–means algorithm based on nighttime light found more details related to urban–rural fringes when compared with the traditional mutation detection method. This study provided an approach to identifying urban–rural fringes accurately and objectively, which is conducive to the study of eco–environmental effects in the process of urbanization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CHINA_C13发布了新的文献求助10
2秒前
Mars发布了新的文献求助10
3秒前
哈哈哈完成签到,获得积分10
3秒前
玛卡巴卡应助平常的毛豆采纳,获得100
4秒前
默默的青旋完成签到,获得积分10
5秒前
8秒前
搜集达人应助淡淡采白采纳,获得10
8秒前
高高代珊完成签到 ,获得积分10
9秒前
gmc发布了新的文献求助10
10秒前
10秒前
11秒前
善学以致用应助Mian采纳,获得10
11秒前
学科共进发布了新的文献求助60
12秒前
LWJ完成签到 ,获得积分10
12秒前
12秒前
缓慢的糖豆完成签到,获得积分10
13秒前
阉太狼完成签到,获得积分10
13秒前
14秒前
soory完成签到,获得积分10
15秒前
任性的傲柏完成签到,获得积分10
15秒前
lwk205完成签到,获得积分0
15秒前
16秒前
一一完成签到,获得积分10
16秒前
16秒前
16秒前
高中生完成签到,获得积分10
17秒前
17秒前
17秒前
希望天下0贩的0应助TT采纳,获得10
18秒前
xxegt完成签到 ,获得积分10
18秒前
19秒前
爱吃泡芙发布了新的文献求助10
19秒前
susu完成签到,获得积分10
21秒前
会神发布了新的文献求助10
21秒前
KK完成签到,获得积分10
22秒前
充电宝应助justin采纳,获得10
24秒前
25秒前
Ch完成签到 ,获得积分10
26秒前
28秒前
ajun完成签到,获得积分10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824