Using DMSP/OLS nighttime light data and K–means method to identify urban–rural fringe of megacities

地理 特大城市 气象学 环境科学 遥感 经济 经济
作者
Zhao Feng,Jian Peng,Jian Wu
出处
期刊:Habitat international [Elsevier]
卷期号:103: 102227-102227 被引量:76
标识
DOI:10.1016/j.habitatint.2020.102227
摘要

Urban–rural fringe, which form a link between urban construction areas and rural hinterland, is the most sensitive area to urbanization. Its accurate identification is of great significance for the further study of urbanization related socio–economic and eco-environmental changes in the perspective of urban–rural contrast. Previous studies of urban–rural fringe identification had problems with narrow scope of application, low efficiency of identification, and the results were greatly influenced by subjective factors. Nighttime light, as an important product of human activities, can reflect the gradient changes of urban–rural landscapes, and can be used to identify urban–rural fringes. Therefore, a K–means–based approach was developed using Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data. Taking Beijing City as an example, in this study we delineated its urban–rural fringes. Our results indicate that a ring–shaped urban–rural fringe surrounds urban central areas, with an area of 3712 km2, which is mainly located in new urban development zones. Inside the urban–rural fringe, lights fluctuated obviously, and the fluctuation index was up to 76.75. Meanwhile, the combination of nighttime light intensity and light fluctuation had better performance than that when they were considered separately in the identification of urban–rural fringes. Furthermore, the K–means algorithm based on nighttime light found more details related to urban–rural fringes when compared with the traditional mutation detection method. This study provided an approach to identifying urban–rural fringes accurately and objectively, which is conducive to the study of eco–environmental effects in the process of urbanization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀丽松思完成签到,获得积分10
1秒前
刘营营完成签到,获得积分10
1秒前
Jolleyhaha发布了新的文献求助10
1秒前
一个西藏发布了新的文献求助10
2秒前
LR完成签到,获得积分10
2秒前
Flash完成签到 ,获得积分10
4秒前
小郑完成签到 ,获得积分10
5秒前
忠一完成签到,获得积分10
5秒前
林lin完成签到,获得积分10
5秒前
NexusExplorer应助刻苦的白梅采纳,获得10
6秒前
7秒前
老老实实好好活着完成签到,获得积分10
10秒前
林蛋完成签到,获得积分20
10秒前
pope完成签到,获得积分20
11秒前
勤劳善良的胖蜜蜂完成签到,获得积分10
11秒前
迪迪张完成签到,获得积分10
11秒前
Lee发布了新的文献求助10
12秒前
12秒前
13秒前
英俊的铭应助曾泳钧采纳,获得10
13秒前
林蛋发布了新的文献求助10
17秒前
perfect完成签到 ,获得积分10
17秒前
18秒前
bioglia完成签到,获得积分10
18秒前
人工智能小配方完成签到,获得积分10
18秒前
Nariy完成签到,获得积分10
19秒前
20秒前
无花果应助科研通管家采纳,获得10
20秒前
贺贺应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
彭于晏应助科研通管家采纳,获得10
21秒前
21秒前
乐乐应助科研通管家采纳,获得30
21秒前
华仔应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603909
求助须知:如何正确求助?哪些是违规求助? 4688768
关于积分的说明 14856065
捐赠科研通 4695384
什么是DOI,文献DOI怎么找? 2541023
邀请新用户注册赠送积分活动 1507167
关于科研通互助平台的介绍 1471832