Using DMSP/OLS nighttime light data and K–means method to identify urban–rural fringe of megacities

地理 特大城市 气象学 环境科学 遥感 经济 经济
作者
Zhao Feng,Jian Peng,Jian Wu
出处
期刊:Habitat international [Elsevier]
卷期号:103: 102227-102227 被引量:76
标识
DOI:10.1016/j.habitatint.2020.102227
摘要

Urban–rural fringe, which form a link between urban construction areas and rural hinterland, is the most sensitive area to urbanization. Its accurate identification is of great significance for the further study of urbanization related socio–economic and eco-environmental changes in the perspective of urban–rural contrast. Previous studies of urban–rural fringe identification had problems with narrow scope of application, low efficiency of identification, and the results were greatly influenced by subjective factors. Nighttime light, as an important product of human activities, can reflect the gradient changes of urban–rural landscapes, and can be used to identify urban–rural fringes. Therefore, a K–means–based approach was developed using Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data. Taking Beijing City as an example, in this study we delineated its urban–rural fringes. Our results indicate that a ring–shaped urban–rural fringe surrounds urban central areas, with an area of 3712 km2, which is mainly located in new urban development zones. Inside the urban–rural fringe, lights fluctuated obviously, and the fluctuation index was up to 76.75. Meanwhile, the combination of nighttime light intensity and light fluctuation had better performance than that when they were considered separately in the identification of urban–rural fringes. Furthermore, the K–means algorithm based on nighttime light found more details related to urban–rural fringes when compared with the traditional mutation detection method. This study provided an approach to identifying urban–rural fringes accurately and objectively, which is conducive to the study of eco–environmental effects in the process of urbanization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
邢寻冬发布了新的文献求助10
1秒前
小蘑菇应助毅1采纳,获得10
1秒前
1秒前
fly_7发布了新的文献求助10
2秒前
2秒前
cherish完成签到,获得积分10
2秒前
如星完成签到 ,获得积分10
3秒前
善学以致用应助lucky采纳,获得10
3秒前
易点邦应助mxtsusan采纳,获得10
3秒前
4秒前
小明明发布了新的文献求助10
4秒前
科研通AI2S应助冷酷妙菡采纳,获得10
4秒前
5秒前
eric完成签到,获得积分10
5秒前
葛三完成签到 ,获得积分10
6秒前
顺顺发布了新的文献求助10
6秒前
周亚平发布了新的文献求助10
7秒前
沟通亿心完成签到,获得积分10
7秒前
Owen应助今天没有哭鸭采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
10秒前
happy璇完成签到,获得积分20
11秒前
kirito1211完成签到,获得积分10
11秒前
lizhiqian2024发布了新的文献求助10
12秒前
狂野的筝完成签到 ,获得积分10
12秒前
水泥酱完成签到,获得积分10
13秒前
搜集达人应助人123456采纳,获得10
13秒前
犹豫的行恶应助xh采纳,获得10
13秒前
luna107完成签到,获得积分10
14秒前
田様应助怪诞采纳,获得10
15秒前
007完成签到,获得积分10
16秒前
nice瑞琪儿发布了新的文献求助10
16秒前
arzw完成签到,获得积分10
16秒前
17秒前
17秒前
Ooo完成签到 ,获得积分10
17秒前
星辰大海应助沉静逍遥采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666314
求助须知:如何正确求助?哪些是违规求助? 4881135
关于积分的说明 15117070
捐赠科研通 4825396
什么是DOI,文献DOI怎么找? 2583303
邀请新用户注册赠送积分活动 1537470
关于科研通互助平台的介绍 1495666