Using DMSP/OLS nighttime light data and K–means method to identify urban–rural fringe of megacities

地理 特大城市 气象学 环境科学 遥感 经济 经济
作者
Zhao Feng,Jian Peng,Jian Wu
出处
期刊:Habitat international [Elsevier]
卷期号:103: 102227-102227 被引量:76
标识
DOI:10.1016/j.habitatint.2020.102227
摘要

Urban–rural fringe, which form a link between urban construction areas and rural hinterland, is the most sensitive area to urbanization. Its accurate identification is of great significance for the further study of urbanization related socio–economic and eco-environmental changes in the perspective of urban–rural contrast. Previous studies of urban–rural fringe identification had problems with narrow scope of application, low efficiency of identification, and the results were greatly influenced by subjective factors. Nighttime light, as an important product of human activities, can reflect the gradient changes of urban–rural landscapes, and can be used to identify urban–rural fringes. Therefore, a K–means–based approach was developed using Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data. Taking Beijing City as an example, in this study we delineated its urban–rural fringes. Our results indicate that a ring–shaped urban–rural fringe surrounds urban central areas, with an area of 3712 km2, which is mainly located in new urban development zones. Inside the urban–rural fringe, lights fluctuated obviously, and the fluctuation index was up to 76.75. Meanwhile, the combination of nighttime light intensity and light fluctuation had better performance than that when they were considered separately in the identification of urban–rural fringes. Furthermore, the K–means algorithm based on nighttime light found more details related to urban–rural fringes when compared with the traditional mutation detection method. This study provided an approach to identifying urban–rural fringes accurately and objectively, which is conducive to the study of eco–environmental effects in the process of urbanization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐的亦丝完成签到,获得积分10
刚刚
2秒前
Uniibooy发布了新的文献求助10
4秒前
九思发布了新的文献求助10
4秒前
儒雅致远发布了新的文献求助10
5秒前
5秒前
斯耐欧发布了新的文献求助20
7秒前
8秒前
9秒前
忐忑的舞蹈完成签到 ,获得积分10
11秒前
12秒前
小鼠星球发布了新的文献求助30
12秒前
刘丽梅发布了新的文献求助10
13秒前
dungaway发布了新的文献求助10
13秒前
Dr_Zhu完成签到,获得积分10
15秒前
meihui完成签到 ,获得积分10
15秒前
15秒前
15秒前
852应助冷酷的柜门采纳,获得10
18秒前
汉堡包应助Felixsun采纳,获得10
18秒前
wanci应助藏鸟采纳,获得10
19秒前
19秒前
19秒前
h123发布了新的文献求助30
20秒前
20秒前
深情安青应助九思采纳,获得10
22秒前
糊涂的冰菱完成签到,获得积分10
23秒前
花花123发布了新的文献求助10
23秒前
完美世界应助阔达摩托采纳,获得10
24秒前
25秒前
25秒前
小小发布了新的文献求助10
25秒前
forever发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
26秒前
WW发布了新的文献求助10
26秒前
27秒前
29秒前
毛毛完成签到 ,获得积分10
30秒前
默默毛豆发布了新的文献求助10
30秒前
沉醉夜色发布了新的文献求助10
30秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454169
求助须知:如何正确求助?哪些是违规求助? 4561592
关于积分的说明 14282986
捐赠科研通 4485543
什么是DOI,文献DOI怎么找? 2456809
邀请新用户注册赠送积分活动 1447428
关于科研通互助平台的介绍 1422808