Using DMSP/OLS nighttime light data and K–means method to identify urban–rural fringe of megacities

地理 特大城市 气象学 环境科学 遥感 经济 经济
作者
Zhao Feng,Jian Peng,Jian Wu
出处
期刊:Habitat international [Elsevier]
卷期号:103: 102227-102227 被引量:76
标识
DOI:10.1016/j.habitatint.2020.102227
摘要

Urban–rural fringe, which form a link between urban construction areas and rural hinterland, is the most sensitive area to urbanization. Its accurate identification is of great significance for the further study of urbanization related socio–economic and eco-environmental changes in the perspective of urban–rural contrast. Previous studies of urban–rural fringe identification had problems with narrow scope of application, low efficiency of identification, and the results were greatly influenced by subjective factors. Nighttime light, as an important product of human activities, can reflect the gradient changes of urban–rural landscapes, and can be used to identify urban–rural fringes. Therefore, a K–means–based approach was developed using Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data. Taking Beijing City as an example, in this study we delineated its urban–rural fringes. Our results indicate that a ring–shaped urban–rural fringe surrounds urban central areas, with an area of 3712 km2, which is mainly located in new urban development zones. Inside the urban–rural fringe, lights fluctuated obviously, and the fluctuation index was up to 76.75. Meanwhile, the combination of nighttime light intensity and light fluctuation had better performance than that when they were considered separately in the identification of urban–rural fringes. Furthermore, the K–means algorithm based on nighttime light found more details related to urban–rural fringes when compared with the traditional mutation detection method. This study provided an approach to identifying urban–rural fringes accurately and objectively, which is conducive to the study of eco–environmental effects in the process of urbanization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
延陵君举报513求助涉嫌违规
刚刚
刚刚
斯文败类应助林夏采纳,获得10
1秒前
铃兰发布了新的文献求助10
2秒前
2秒前
forever发布了新的文献求助30
2秒前
Itazu完成签到,获得积分10
2秒前
风衣拖地完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
Deposit发布了新的文献求助10
4秒前
5秒前
yuyu发布了新的文献求助10
6秒前
樱岛流京子完成签到,获得积分10
6秒前
6秒前
科研通AI6应助林白采纳,获得30
7秒前
Hmzek完成签到,获得积分10
7秒前
海豹发布了新的文献求助10
7秒前
闲听花落发布了新的文献求助10
7秒前
8秒前
小灵通发布了新的文献求助10
8秒前
机灵的友儿完成签到,获得积分10
8秒前
Oui完成签到 ,获得积分10
8秒前
8秒前
魅影发布了新的文献求助10
8秒前
8秒前
bkagyin应助forever采纳,获得10
9秒前
斗罗大陆完成签到,获得积分10
9秒前
双目识林完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
完美世界应助栗子采纳,获得10
13秒前
子怡完成签到,获得积分10
13秒前
进击的PhD应助等一轮明月采纳,获得30
14秒前
Bey完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646180
求助须知:如何正确求助?哪些是违规求助? 4770425
关于积分的说明 15033724
捐赠科研通 4804901
什么是DOI,文献DOI怎么找? 2569318
邀请新用户注册赠送积分活动 1526307
关于科研通互助平台的介绍 1485803