Using DMSP/OLS nighttime light data and K–means method to identify urban–rural fringe of megacities

地理 特大城市 气象学 环境科学 遥感 经济 经济
作者
Zhao Feng,Jian Peng,Jian Wu
出处
期刊:Habitat international [Elsevier]
卷期号:103: 102227-102227 被引量:76
标识
DOI:10.1016/j.habitatint.2020.102227
摘要

Urban–rural fringe, which form a link between urban construction areas and rural hinterland, is the most sensitive area to urbanization. Its accurate identification is of great significance for the further study of urbanization related socio–economic and eco-environmental changes in the perspective of urban–rural contrast. Previous studies of urban–rural fringe identification had problems with narrow scope of application, low efficiency of identification, and the results were greatly influenced by subjective factors. Nighttime light, as an important product of human activities, can reflect the gradient changes of urban–rural landscapes, and can be used to identify urban–rural fringes. Therefore, a K–means–based approach was developed using Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data. Taking Beijing City as an example, in this study we delineated its urban–rural fringes. Our results indicate that a ring–shaped urban–rural fringe surrounds urban central areas, with an area of 3712 km2, which is mainly located in new urban development zones. Inside the urban–rural fringe, lights fluctuated obviously, and the fluctuation index was up to 76.75. Meanwhile, the combination of nighttime light intensity and light fluctuation had better performance than that when they were considered separately in the identification of urban–rural fringes. Furthermore, the K–means algorithm based on nighttime light found more details related to urban–rural fringes when compared with the traditional mutation detection method. This study provided an approach to identifying urban–rural fringes accurately and objectively, which is conducive to the study of eco–environmental effects in the process of urbanization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小天草水母完成签到 ,获得积分10
刚刚
Fan完成签到 ,获得积分10
1秒前
软猫完成签到,获得积分10
1秒前
money发布了新的文献求助10
2秒前
PCR达人完成签到,获得积分10
3秒前
4秒前
5秒前
Silverexile完成签到,获得积分10
5秒前
赵舒坦完成签到,获得积分10
5秒前
考啥都上岸完成签到,获得积分10
6秒前
时长两年半完成签到,获得积分10
7秒前
曾无忧应助xingmeng采纳,获得10
7秒前
负责的大米完成签到,获得积分10
8秒前
健忘以旋发布了新的文献求助10
8秒前
祝yu完成签到 ,获得积分10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
whatever应助科研通管家采纳,获得20
8秒前
8秒前
香蕉诗蕊应助科研通管家采纳,获得10
8秒前
KJ应助科研通管家采纳,获得10
8秒前
zik应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
超级幼旋应助科研通管家采纳,获得10
8秒前
Stella应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
8秒前
Lucas应助科研通管家采纳,获得10
9秒前
美女发布了新的文献求助10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
香蕉诗蕊应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600432
求助须知:如何正确求助?哪些是违规求助? 4686051
关于积分的说明 14841577
捐赠科研通 4676571
什么是DOI,文献DOI怎么找? 2538725
邀请新用户注册赠送积分活动 1505789
关于科研通互助平台的介绍 1471195