Using DMSP/OLS nighttime light data and K–means method to identify urban–rural fringe of megacities

地理 特大城市 气象学 环境科学 遥感 经济 经济
作者
Zhao Feng,Jian Peng,Jian Wu
出处
期刊:Habitat international [Elsevier BV]
卷期号:103: 102227-102227 被引量:76
标识
DOI:10.1016/j.habitatint.2020.102227
摘要

Urban–rural fringe, which form a link between urban construction areas and rural hinterland, is the most sensitive area to urbanization. Its accurate identification is of great significance for the further study of urbanization related socio–economic and eco-environmental changes in the perspective of urban–rural contrast. Previous studies of urban–rural fringe identification had problems with narrow scope of application, low efficiency of identification, and the results were greatly influenced by subjective factors. Nighttime light, as an important product of human activities, can reflect the gradient changes of urban–rural landscapes, and can be used to identify urban–rural fringes. Therefore, a K–means–based approach was developed using Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data. Taking Beijing City as an example, in this study we delineated its urban–rural fringes. Our results indicate that a ring–shaped urban–rural fringe surrounds urban central areas, with an area of 3712 km2, which is mainly located in new urban development zones. Inside the urban–rural fringe, lights fluctuated obviously, and the fluctuation index was up to 76.75. Meanwhile, the combination of nighttime light intensity and light fluctuation had better performance than that when they were considered separately in the identification of urban–rural fringes. Furthermore, the K–means algorithm based on nighttime light found more details related to urban–rural fringes when compared with the traditional mutation detection method. This study provided an approach to identifying urban–rural fringes accurately and objectively, which is conducive to the study of eco–environmental effects in the process of urbanization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Emma完成签到 ,获得积分10
刚刚
Shawna完成签到,获得积分10
刚刚
刚刚
1秒前
风中悟空发布了新的文献求助10
1秒前
2秒前
3秒前
英俊的铭应助大号采纳,获得10
3秒前
邪恶摇粒绒完成签到,获得积分10
4秒前
4秒前
4秒前
优美一寡完成签到,获得积分10
4秒前
丘比特应助yingying采纳,获得10
4秒前
深情安青应助梁馨月采纳,获得10
5秒前
安详怀亦完成签到 ,获得积分10
5秒前
华仔应助搞怪的映菡采纳,获得10
6秒前
LIJIngcan发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助30
6秒前
科研通AI5应助ning采纳,获得10
6秒前
Nini完成签到,获得积分10
7秒前
7秒前
7秒前
Double_N发布了新的文献求助30
7秒前
在秦岭喝豆浆的北极熊完成签到 ,获得积分10
7秒前
亚鹏完成签到,获得积分10
8秒前
8秒前
Xxx发布了新的文献求助10
9秒前
Jasper应助北冥风采纳,获得10
9秒前
深情安青应助小呆采纳,获得10
10秒前
科研通AI5应助李卓霖采纳,获得10
11秒前
Chem34完成签到,获得积分10
11秒前
1111发布了新的文献求助10
12秒前
NexusExplorer应助dududu采纳,获得10
12秒前
13秒前
13秒前
李多多完成签到,获得积分10
13秒前
13秒前
零琳完成签到 ,获得积分10
14秒前
14秒前
陈曦完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4951300
求助须知:如何正确求助?哪些是违规求助? 4213988
关于积分的说明 13107085
捐赠科研通 3995738
什么是DOI,文献DOI怎么找? 2187102
邀请新用户注册赠送积分活动 1202366
关于科研通互助平台的介绍 1115447