磁刺激
痉挛
冲程(发动机)
物理医学与康复
医学
脑刺激
刺激
交叉研究
安慰剂
物理疗法
心理学
麻醉
内科学
机械工程
工程类
病理
替代医学
作者
Raffaella Chieffo,Fabio Giatsidis,Roberto Santangelo,Uri Alyagon,Mauro Comola,Abraham Zangen,Gıancarlo Comı,Letizia Leocani
摘要
Repetitive transcranial magnetic stimulation (rTMS) has been recognized as a promising intervention for the treatment of post-stroke motor deficits. Here, we explore safety, feasibility, and potential effectiveness of high-frequency rTMS (HF-rTMS) delivered with the Hesed coil (H-coil) during active cycling on paretic lower extremity (LE) motor function in chronic stroke.Twelve subjects with a first-ever stroke were recruited in this double-blind, placebo controlled, crossover study. Eleven sessions of HF-rTMS (40 2s-trains of 20 Hz at 90% resting leg motor threshold) were delivered over the LE motor areas using the H-coil during active cycling for three weeks. Each subject underwent both real and sham rTMS treatments separated by a four-week washout period, in a random sequence. Vital signs were recorded before and after each rTMS session. Any discomfort related to stimulation and side effects were recorded. LE function was also evaluated with Fugl-Meyer assessment (FMA-LE), spasticity was assessed with modified-Ashworth scale and measures of gait speed and endurance (10-meter and 6-min walk tests, respectively) were recorded.No participant reported serious adverse effects. During real rTMS, 4 of 12 subjects reported mild side effects including transitory dizziness and muscle twitches on shoulder, so that intensity of stimulation initially set at 90% of RMT was reduced to 80% of RMT on average in these four subjects. Only real treatment was associated with a significant and sustained improvement in FMA-LL (67% responders vs. 9% of the sham). Spasticity significantly ameliorated only after the real rTMS. Real treatment did not offer advantages on walking timed measures when compared with sham.This exploratory study suggests that bilateral HF-rTMS combined with cycling is safe and potentially effective in ameliorating paretic LE motor function and spasticity, rather than gait speed or endurance, in chronic stroke.
科研通智能强力驱动
Strongly Powered by AbleSci AI