聚乳酸
极限抗拉强度
材料科学
复合材料
复合数
纤维
挤压
热固性聚合物
延伸率
天然纤维
钢筋
纤维增强复合材料
聚合物
作者
The Jaya Suteja,Hudiyo Firmanto,Arum Soesanti,Christian Christian
标识
DOI:10.1177/0892705720945371
摘要
Previous researchers tried to improve the mechanical properties of 3D printed part by adding short or continuous, natural, or nonnatural fibers as the reinforcement for thermosetting or thermoplastic matrix. None of the research found in the literature incorporates continuous natural pineapple leaf fiber as the reinforcement for polylactic acid (PLA) matrix by using 3D printing. The objective of this research is to investigate the tensile strength, the elongation, and the dimensional error of the 3D printed parts made of continuous pineapple leaf fiber-reinforced PLA composite using different values of extrusion temperature and feed rate. The experiment involves 3 2 factorial design with two replications and, therefore, prints 18 tensile test specimens according to ASTM D638. Based on the result of the experiment, it can be concluded that the use of continuous pineapple leaf fiber as the reinforcement for the PLA matrix increases the tensile strength of the composite. The use of continuous pineapple leaf fiber does not increase the dimensional error value of the composite part beyond the maximum value of the common fused deposition modeling printed part. Moreover, the required time to print the composite part is the same as the required time to print the pure PLA part. However, the elongation of the composite part is lower than the pure PLA part.
科研通智能强力驱动
Strongly Powered by AbleSci AI