Q-Learning-Based Coordinated Variable Speed Limit and Hard Shoulder Running Control Strategy to Reduce Travel Time at Freeway Corridor

速度限制 强化学习 控制(管理) 运输工程 交通拥挤 计算机科学 变量(数学) 极限(数学) 流量(计算机网络) 测光模式 模拟 工程类 计算机网络 人工智能 数学分析 机械工程 数学
作者
Weiyi Zhou,Mofeng Yang,Minha Lee,Lei Zhang
出处
期刊:Transportation Research Record [SAGE]
卷期号:2674 (11): 915-925 被引量:9
标识
DOI:10.1177/0361198120949875
摘要

To increase traffic mobility and safety, several types of active traffic management (ATM) strategies, such as variable speed limit (VSL), ramp metering, dynamic message signs, and hard shoulder running (HSR), are adopted in many countries. While all kinds of ATM strategies show promise in releasing traffic congestion, many studies indicate that stand-alone strategies have very limited capability. To remedy the defects of stand-alone strategies, cooperative ATM strategies have caught researchers’ attention and different combinations have been studied. In this paper, a coordinated VSL and HSR control strategy based on a reinforcement learning technique—Q-learning—is proposed. The proposed control strategy bridges up a direct connection between the traffic flow data and the ATM control strategies via intensive self-learning processes, thus reducing the need for human knowledge. A typical congested interstate highway, I-270 in Maryland, United States, was selected as the study area to evaluate the proposed strategy. A dynamic traffic assignment simulation model was introduced to calibrate the network with real-world data and was used to evaluate the regional impact of the proposed algorithm. Simulation results indicated that the proposed coordinated control could reduce corridor travel time by up to 27%. The performance of various control strategies were also compared. The results suggested that the proposed strategy outperformed the stand-alone control strategies and the traditional feedback-based VSL strategy in mitigating congestion and reducing travel time on the freeway corridor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll200207完成签到,获得积分10
1秒前
凶狠的乐巧完成签到,获得积分10
1秒前
Lin发布了新的文献求助10
2秒前
三七发布了新的文献求助10
2秒前
2秒前
鸣隐发布了新的文献求助10
2秒前
3秒前
3秒前
软豆皮完成签到,获得积分10
3秒前
lan完成签到,获得积分10
4秒前
英姑应助松松果采纳,获得10
4秒前
5秒前
5秒前
5秒前
5秒前
chillin发布了新的文献求助10
6秒前
zhui发布了新的文献求助10
6秒前
薪炭林完成签到,获得积分10
7秒前
Rrr发布了新的文献求助10
7秒前
7秒前
SCISSH完成签到 ,获得积分10
7秒前
FEI发布了新的文献求助10
8秒前
科研通AI5应助奔奔采纳,获得10
9秒前
星辰大海应助八八采纳,获得20
9秒前
gaga发布了新的文献求助10
9秒前
木子加y发布了新的文献求助10
9秒前
大大泡泡完成签到,获得积分10
10秒前
852应助zhui采纳,获得10
11秒前
芒果发布了新的文献求助10
11秒前
12秒前
前百年253完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
14秒前
xiaoguai完成签到 ,获得积分10
14秒前
甜蜜晓绿发布了新的文献求助10
16秒前
16秒前
Bruce发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794