已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Q-Learning-Based Coordinated Variable Speed Limit and Hard Shoulder Running Control Strategy to Reduce Travel Time at Freeway Corridor

速度限制 强化学习 控制(管理) 运输工程 交通拥挤 计算机科学 变量(数学) 极限(数学) 流量(计算机网络) 测光模式 模拟 工程类 计算机网络 人工智能 数学分析 机械工程 数学
作者
Weiyi Zhou,Mofeng Yang,Minha Lee,Lei Zhang
出处
期刊:Transportation Research Record [SAGE]
卷期号:2674 (11): 915-925 被引量:9
标识
DOI:10.1177/0361198120949875
摘要

To increase traffic mobility and safety, several types of active traffic management (ATM) strategies, such as variable speed limit (VSL), ramp metering, dynamic message signs, and hard shoulder running (HSR), are adopted in many countries. While all kinds of ATM strategies show promise in releasing traffic congestion, many studies indicate that stand-alone strategies have very limited capability. To remedy the defects of stand-alone strategies, cooperative ATM strategies have caught researchers’ attention and different combinations have been studied. In this paper, a coordinated VSL and HSR control strategy based on a reinforcement learning technique—Q-learning—is proposed. The proposed control strategy bridges up a direct connection between the traffic flow data and the ATM control strategies via intensive self-learning processes, thus reducing the need for human knowledge. A typical congested interstate highway, I-270 in Maryland, United States, was selected as the study area to evaluate the proposed strategy. A dynamic traffic assignment simulation model was introduced to calibrate the network with real-world data and was used to evaluate the regional impact of the proposed algorithm. Simulation results indicated that the proposed coordinated control could reduce corridor travel time by up to 27%. The performance of various control strategies were also compared. The results suggested that the proposed strategy outperformed the stand-alone control strategies and the traditional feedback-based VSL strategy in mitigating congestion and reducing travel time on the freeway corridor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
hhhh完成签到,获得积分10
2秒前
hahaha完成签到,获得积分10
6秒前
hc完成签到,获得积分10
10秒前
小水蜜桃完成签到 ,获得积分10
12秒前
14秒前
科研通AI2S应助夏侯嘉采纳,获得10
15秒前
ZLY完成签到 ,获得积分10
16秒前
17秒前
asdfj应助miqiqi采纳,获得10
17秒前
buzhinianjiu完成签到 ,获得积分10
19秒前
李健应助可别熬夜了采纳,获得10
22秒前
悦耳的惜海完成签到,获得积分20
24秒前
27秒前
xiaxue完成签到 ,获得积分10
27秒前
29秒前
29秒前
Dr.完成签到 ,获得积分10
32秒前
lzc发布了新的文献求助10
32秒前
ET发布了新的文献求助10
34秒前
科研通AI2S应助ventus采纳,获得10
35秒前
syr发布了新的文献求助10
35秒前
HHHSean发布了新的文献求助10
42秒前
43秒前
积极的香菇完成签到 ,获得积分10
43秒前
44秒前
烟花应助Rita采纳,获得10
45秒前
SiO2完成签到 ,获得积分10
45秒前
如意白猫完成签到,获得积分10
47秒前
michaelxia完成签到,获得积分10
48秒前
优质演绎了我的青春完成签到 ,获得积分10
49秒前
50秒前
michaelxia发布了新的文献求助10
51秒前
51秒前
52秒前
ET关闭了ET文献求助
53秒前
56秒前
zzr发布了新的文献求助10
57秒前
tangxinhebaodan完成签到,获得积分20
58秒前
huang1完成签到,获得积分10
1分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171316
求助须知:如何正确求助?哪些是违规求助? 2822235
关于积分的说明 7938538
捐赠科研通 2482767
什么是DOI,文献DOI怎么找? 1322762
科研通“疑难数据库(出版商)”最低求助积分说明 633722
版权声明 602627