扩展卡尔曼滤波器
全球定位系统
卡尔曼滤波器
计算机科学
控制理论(社会学)
不变扩展卡尔曼滤波器
GPS/INS
惯性导航系统
传感器融合
模糊逻辑
GPS信号
快速卡尔曼滤波
信号(编程语言)
导航系统
实时计算
人工智能
辅助全球定位系统
惯性参考系
电信
物理
量子力学
程序设计语言
控制(管理)
作者
Kebin He,Chaoyang Dong
出处
期刊:2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS)
日期:2019-07-01
被引量:1
标识
DOI:10.1109/icpics47731.2019.8942402
摘要
For the UAV inertial/GPS integrated navigation system, considering the problem of GPS data interruption in navigation process, this technical paper designs an improved sensors fusion algorithm. Combining the traditional extended Kalman filter (EKF) technology with strong tracking filter, a fuzzy strong tracking extended Kalman filter algorithm is designed by using the membership function of the fuzzy theory. Then the navigation simulation model of UAV is established. The simulation results show that the improved algorithm can quickly adapt to the sudden change of GPS signal, that is, when the GPS signal restores from the fault state to the normal state, the improved algorithm can converge to the stable state more quickly than the EKF algorithm, and complete the estimation of flight state again. At the same time, compared with EKF and strong tracking extended Kalman filter (SKEKF), the improved algorithm in this paper has higher estimation accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI