司他内酯
斯特里加
受体
配体(生物化学)
选择性
化学
植物
灵敏度(控制系统)
生物
基因
生物化学
拟南芥
发芽
催化作用
突变体
工程类
电子工程
作者
Yupei Wang,Ruifeng Yao,DU Xiao-xi,Lvjun Guo,Li Chen,Daoxin Xie,Steven M. Smith
出处
期刊:Plant Physiology
[Oxford University Press]
日期:2021-01-01
卷期号:185 (4): 1411-1428
被引量:37
标识
DOI:10.1093/plphys/kiaa048
摘要
Abstract Seeds of the root parasitic plant Striga hermonthica can sense very low concentrations of strigolactones (SLs) exuded from host roots. The S. hermonthica hyposensitive to light (ShHTL) proteins are putative SL receptors, among which ShHTL7 reportedly confers sensitivity to picomolar levels of SL when expressed in Arabidopsis thaliana. However, the molecular mechanism underlying ShHTL7 sensitivity is unknown. Here we determined the ShHTL7 crystal structure and quantified its interactions with various SLs and key interacting proteins. We established that ShHTL7 has an active-site pocket with broad-spectrum response to different SLs and moderate affinity. However, in contrast to other ShHTLs, we observed particularly high affinity of ShHTL7 for F-box protein AtMAX2. Furthermore, ShHTL7 interacted with AtMAX2 and with transcriptional regulator AtSMAX1 in response to nanomolar SL concentration. ShHTL7 mutagenesis analyses identified surface residues that contribute to its high-affinity binding to AtMAX2 and residues in the ligand binding pocket that confer broad-spectrum response to SLs with various structures. Crucially, yeast-three hybrid experiments showed that AtMAX2 confers responsiveness of the ShHTL7–AtSMAX1 interaction to picomolar levels of SL in line with the previously reported physiological sensitivity. These findings highlight the key role of SL-induced MAX2–ShHTL7–SMAX1 complex formation in determining the sensitivity to SL. Moreover, these data suggest a strategy to screen for compounds that could promote suicidal seed germination at physiologically relevant levels.
科研通智能强力驱动
Strongly Powered by AbleSci AI