SparseDGCNN: Recognizing Emotion From Multichannel EEG Signals

脑电图 约束(计算机辅助设计) 符号 模式识别(心理学) 图形 人工智能 卷积神经网络 计算机科学 支持向量机 数学 理论计算机科学 算术 几何学 心理学 精神科
作者
Guanhua Zhang,Minjing Yu,Yong-Jin Liu,Guozhen Zhao,Dan Zhang,Wenming Zheng
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (1): 537-548 被引量:63
标识
DOI:10.1109/taffc.2021.3051332
摘要

Emotion recognition from EEG signals has attracted much attention in affective computing. Recently, a novel dynamic graph convolutional neural network (DGCNN) model was proposed, which simultaneously optimized the network parameters and a weighted graph $G$ characterizing the strength of functional relation between each pair of two electrodes in the EEG recording equipment. In this article, we propose a sparse DGCNN model which modifies DGCNN by imposing a sparseness constraint on $G$ and improves the emotion recognition performance. Our work is based on an important observation: the tomography study reveals that different brain regions sampled by EEG electrodes may be related to different functions of the brain and then the functional relations among electrodes are possibly highly localized and sparse. However, introducing sparseness constraint into the graph $G$ makes the loss function of sparse DGCNN non-differentiable at some singular points. To ensure that the training process of sparse DGCNN converges, we apply the forward-backward splitting method. To evaluate the performance of sparse DGCNN, we compare it with four representative recognition methods (SVM, DBN, GELM and DGCNN). In addition to comparing different recognition methods, our experiments also compare different features and spectral bands, including EEG features in time-frequency domain (DE, PSD, DASM, RASM, ASM and DCAU on different bands) extracted from four representative EEG datasets (SEED, DEAP, DREAMER, and CMEED). The results show that (1) sparse DGCNN has consistently better accuracy than representative methods and has a good scalability, and (2) DE, PSD, and ASM features on $\gamma$ band convey most discriminative emotional information, and fusion of separate features and frequency bands can improve recognition performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xlb完成签到,获得积分10
刚刚
re发布了新的文献求助10
1秒前
1秒前
可爱的函函应助Apcolyptyo采纳,获得10
1秒前
楚文强完成签到,获得积分10
2秒前
田様应助王晓蕾采纳,获得10
2秒前
NAN发布了新的文献求助10
3秒前
Xyx完成签到,获得积分10
4秒前
三三发布了新的文献求助10
4秒前
cctv18应助刘阿呆采纳,获得10
4秒前
ngh完成签到,获得积分10
5秒前
科研通AI5应助优秀的灵安采纳,获得30
5秒前
5秒前
6秒前
duhp完成签到,获得积分10
6秒前
林卷卷发布了新的文献求助10
7秒前
7秒前
打打应助lily采纳,获得10
7秒前
7秒前
搜集达人应助受伤无招采纳,获得10
7秒前
斯文败类应助baocq采纳,获得10
8秒前
8秒前
kudou发布了新的文献求助10
8秒前
9秒前
Owen应助阿哈采纳,获得10
9秒前
9秒前
9秒前
科研通AI5应助nancy采纳,获得10
10秒前
jennica发布了新的文献求助10
10秒前
yiyi发布了新的文献求助20
11秒前
时雨濛濛完成签到 ,获得积分10
11秒前
NAN完成签到,获得积分10
12秒前
12秒前
烟花应助奶咖兔兔采纳,获得10
13秒前
LYTYamede发布了新的文献求助10
14秒前
子衿发布了新的文献求助10
14秒前
Milou完成签到,获得积分10
14秒前
wyw完成签到 ,获得积分10
15秒前
十一发布了新的文献求助10
15秒前
研友_VZG7GZ应助Asuna采纳,获得10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755983
求助须知:如何正确求助?哪些是违规求助? 3299253
关于积分的说明 10109367
捐赠科研通 3013816
什么是DOI,文献DOI怎么找? 1655273
邀请新用户注册赠送积分活动 789692
科研通“疑难数据库(出版商)”最低求助积分说明 753361