SparseDGCNN: Recognizing Emotion From Multichannel EEG Signals

脑电图 约束(计算机辅助设计) 符号 模式识别(心理学) 图形 人工智能 卷积神经网络 计算机科学 支持向量机 数学 理论计算机科学 算术 几何学 心理学 精神科
作者
Guanhua Zhang,Minjing Yu,Yong-Jin Liu,Guozhen Zhao,Dan Zhang,Wenming Zheng
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (1): 537-548 被引量:63
标识
DOI:10.1109/taffc.2021.3051332
摘要

Emotion recognition from EEG signals has attracted much attention in affective computing. Recently, a novel dynamic graph convolutional neural network (DGCNN) model was proposed, which simultaneously optimized the network parameters and a weighted graph $G$ characterizing the strength of functional relation between each pair of two electrodes in the EEG recording equipment. In this article, we propose a sparse DGCNN model which modifies DGCNN by imposing a sparseness constraint on $G$ and improves the emotion recognition performance. Our work is based on an important observation: the tomography study reveals that different brain regions sampled by EEG electrodes may be related to different functions of the brain and then the functional relations among electrodes are possibly highly localized and sparse. However, introducing sparseness constraint into the graph $G$ makes the loss function of sparse DGCNN non-differentiable at some singular points. To ensure that the training process of sparse DGCNN converges, we apply the forward-backward splitting method. To evaluate the performance of sparse DGCNN, we compare it with four representative recognition methods (SVM, DBN, GELM and DGCNN). In addition to comparing different recognition methods, our experiments also compare different features and spectral bands, including EEG features in time-frequency domain (DE, PSD, DASM, RASM, ASM and DCAU on different bands) extracted from four representative EEG datasets (SEED, DEAP, DREAMER, and CMEED). The results show that (1) sparse DGCNN has consistently better accuracy than representative methods and has a good scalability, and (2) DE, PSD, and ASM features on $\gamma$ band convey most discriminative emotional information, and fusion of separate features and frequency bands can improve recognition performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿野仙踪完成签到,获得积分10
1秒前
cheng完成签到,获得积分10
1秒前
2秒前
3秒前
wzgkeyantong发布了新的文献求助20
4秒前
哈哈哈的一笑完成签到 ,获得积分10
4秒前
情怀应助djf103采纳,获得10
5秒前
yang完成签到,获得积分10
8秒前
执着发布了新的文献求助10
9秒前
会飞的猪完成签到,获得积分20
9秒前
爱静静应助mmyhn采纳,获得10
9秒前
11秒前
宁静致远完成签到,获得积分0
11秒前
黄毛虎完成签到 ,获得积分10
11秒前
贪玩的野狼完成签到 ,获得积分10
12秒前
12秒前
zzt37927发布了新的文献求助10
12秒前
13秒前
晨珂完成签到,获得积分10
13秒前
西湖渔夫完成签到,获得积分20
14秒前
月亮睡啦完成签到,获得积分10
14秒前
14秒前
14秒前
舒心乐蓉发布了新的文献求助10
15秒前
SHEEPMEN完成签到,获得积分10
16秒前
卢西奥完成签到,获得积分10
16秒前
TheDing完成签到,获得积分10
16秒前
董吉发布了新的文献求助10
17秒前
wenyh完成签到 ,获得积分10
18秒前
月亮睡啦发布了新的文献求助10
18秒前
luochen完成签到,获得积分10
18秒前
tion66完成签到 ,获得积分10
19秒前
Efei完成签到,获得积分10
19秒前
asdfg123发布了新的文献求助10
19秒前
高xuewen应助zzt37927采纳,获得10
20秒前
20秒前
世界尽头完成签到 ,获得积分0
23秒前
rosalieshi完成签到,获得积分0
23秒前
djf103发布了新的文献求助10
25秒前
饱满的莫茗完成签到,获得积分20
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162599
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900687
捐赠科研通 2473052
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631452
版权声明 602175