Towards an Artificial Intelligence Framework for Data-Driven Prediction of Coronavirus Clinical Severity

大流行 2019年冠状病毒病(COVID-19) 预测分析 急性呼吸窘迫综合征 重症监护医学 医学 分析 疾病 介绍(产科) 疾病严重程度 人工智能 计算机科学 机器学习 数据科学 传染病(医学专业) 内科学 外科
作者
Xiangao Jiang,Megan Coffee,Anasse Bari,Junzhang Wang,Xinyue Jiang,Jianping Huang,Jichan Shi,Jianyi Dai,Jing Cai,Tianxiao Zhang,Zhengxing Wu,Guiqing He,Yitong Huang
出处
期刊:Computers, materials & continua 卷期号:62 (3): 537-551 被引量:433
标识
DOI:10.32604/cmc.2020.010691
摘要

The virus SARS-CoV2, which causes coronavirus disease (COVID-19) has become a pandemic and has spread to every inhabited continent. Given the increasing caseload, there is an urgent need to augment clinical skills in order to identify from among the many mild cases the few that will progress to critical illness. We present a first step towards building an artificial intelligence (AI) framework, with predictive analytics (PA) capabilities applied to real patient data, to provide rapid clinical decision-making support. COVID-19 has presented a pressing need as a) clinicians are still developing clinical acumen to this novel disease and b) resource limitations in a surging pandemic require difficult resource allocation decisions. The objectives of this research are: (1) to algorithmically identify the combinations of clinical characteristics of COVID-19 that predict outcomes, and (2) to develop a tool with AI capabilities that will predict patients at risk for more severe illness on initial presentation. The predictive models learn from historical data to help predict who will develop acute respiratory distress syndrome (ARDS), a severe outcome in COVID-19. Our results, based on data from two hospitals in Wenzhou, Zhejiang, China, identified features on initial presentation with COVID-19 that were most predictive of later development of ARDS. A mildly elevated alanine aminotransferase (ALT) (a liver enzyme), the presence of myalgias (body aches), and an elevated hemoglobin (red blood cells), in this order, are the clinical features, on presentation, that are the most predictive. The predictive models that learned from historical data of patients from these two hospitals achieved 70% to 80% accuracy in predicting severe cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
栀璃鸳挽完成签到,获得积分10
2秒前
yaoyao发布了新的文献求助30
2秒前
2秒前
kurozawa完成签到,获得积分20
3秒前
3秒前
魔幻诗兰完成签到,获得积分10
4秒前
Passskd发布了新的文献求助80
5秒前
5秒前
7秒前
欧阳万仇发布了新的文献求助10
8秒前
9秒前
深情安青应助yannchen采纳,获得10
10秒前
LeafJin完成签到 ,获得积分10
10秒前
11秒前
Gxx完成签到,获得积分10
12秒前
干净傲霜发布了新的文献求助30
13秒前
zzzzz完成签到,获得积分10
15秒前
情怀应助tomalan采纳,获得10
15秒前
15秒前
15秒前
17秒前
18秒前
22秒前
marvelou完成签到,获得积分10
22秒前
23秒前
24秒前
月亮发布了新的文献求助10
24秒前
胖豆完成签到,获得积分10
25秒前
我是老大应助科研通管家采纳,获得10
26秒前
Akim应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
爆米花应助科研通管家采纳,获得10
27秒前
烟花应助科研通管家采纳,获得10
27秒前
27秒前
李爱国应助科研通管家采纳,获得10
27秒前
天天快乐应助科研通管家采纳,获得10
27秒前
CipherSage应助科研通管家采纳,获得20
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343658
求助须知:如何正确求助?哪些是违规求助? 2970701
关于积分的说明 8644814
捐赠科研通 2650771
什么是DOI,文献DOI怎么找? 1451444
科研通“疑难数据库(出版商)”最低求助积分说明 672145
邀请新用户注册赠送积分活动 661569