拉图卡
埃鲁卡
菠菜
拟南芥
菠菜
生物
纳米传感器
植物
十字花科
拟南芥
生物化学
叶绿体
基因
纳米技术
材料科学
突变体
作者
Tedrick Thomas Salim Lew,Volodymyr B. Koman,Kevin S. Silmore,Jun Sung Seo,Pavlo Gordiichuk,Seon‐Yeong Kwak,Minkyung Park,Mervin Chun-Yi Ang,Duc Thinh Khong,Michael A. Lee,Mary B. Chan‐Park,Nam‐Hai Chua,Michael S. Strano
出处
期刊:Nature plants
[Springer Nature]
日期:2020-04-15
卷期号:6 (4): 404-415
被引量:192
标识
DOI:10.1038/s41477-020-0632-4
摘要
Decoding wound signalling in plants is critical for understanding various aspects of plant sciences, from pest resistance to secondary metabolite and phytohormone biosynthesis. The plant defence responses are known to primarily involve NADPH-oxidase-mediated H2O2 and Ca2+ signalling pathways, which propagate across long distances through the plant vasculature and tissues. Using non-destructive optical nanosensors, we find that the H2O2 concentration profile post-wounding follows a logistic waveform for six plant species: lettuce (Lactuca sativa), arugula (Eruca sativa), spinach (Spinacia oleracea), strawberry blite (Blitum capitatum), sorrel (Rumex acetosa) and Arabidopsis thaliana, ranked in order of wave speed from 0.44 to 3.10 cm min-1. The H2O2 wave tracks the concomitant surface potential wave measured electrochemically. We show that the plant RbohD glutamate-receptor-like channels (GLR3.3 and GLR3.6) are all critical to the propagation of the wound-induced H2O2 wave. Our findings highlight the utility of a new type of nanosensor probe that is species-independent and capable of real-time, spatial and temporal biochemical measurements in plants.
科研通智能强力驱动
Strongly Powered by AbleSci AI