清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Artificial Intelligence–Based Traditional Chinese Medicine Assistive Diagnostic System: Validation Study

人工智能 计算机科学 多样性(控制论) 过程(计算) 专家系统 卷积神经网络 机器学习 操作系统
作者
Hong Zhang,Wandong Ni,Jing Li,Jiajun Zhang
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:8 (6): e17608-e17608 被引量:63
标识
DOI:10.2196/17608
摘要

Background Artificial intelligence–based assistive diagnostic systems imitate the deductive reasoning process of a human physician in biomedical disease diagnosis and treatment decision making. While impressive progress in this area has been reported, most of the reported successes are applications of artificial intelligence in Western medicine. The application of artificial intelligence in traditional Chinese medicine has lagged mainly because traditional Chinese medicine practitioners need to perform syndrome differentiation as well as biomedical disease diagnosis before a treatment decision can be made. Syndrome, a concept unique to traditional Chinese medicine, is an abstraction of a variety of signs and symptoms. The fact that the relationship between diseases and syndromes is not one-to-one but rather many-to-many makes it very challenging for a machine to perform syndrome predictions. So far, only a handful of artificial intelligence–based assistive traditional Chinese medicine diagnostic models have been reported, and they are limited in application to a single disease-type. Objective The objective was to develop an artificial intelligence–based assistive diagnostic system capable of diagnosing multiple types of diseases that are common in traditional Chinese medicine, given a patient’s electronic health record notes. The system was designed to simultaneously diagnose the disease and produce a list of corresponding syndromes. Methods Unstructured freestyle electronic health record notes were processed by natural language processing techniques to extract clinical information such as signs and symptoms which were represented by named entities. Natural language processing used a recurrent neural network model called bidirectional long short-term memory network–conditional random forest. A convolutional neural network was then used to predict the disease-type out of 187 diseases in traditional Chinese medicine. A novel traditional Chinese medicine syndrome prediction method—an integrated learning model—was used to produce a corresponding list of probable syndromes. By following a majority-rule voting method, the integrated learning model for syndrome prediction can take advantage of four existing prediction methods (back propagation, random forest, extreme gradient boosting, and support vector classifier) while avoiding their respective weaknesses which resulted in a consistently high prediction accuracy. Results A data set consisting of 22,984 electronic health records from Guanganmen Hospital of the China Academy of Chinese Medical Sciences that were collected between January 1, 2017 and September 7, 2018 was used. The data set contained a total of 187 diseases that are commonly diagnosed in traditional Chinese medicine. The diagnostic system was designed to be able to detect any one of the 187 disease-types. The data set was partitioned into a training set, a validation set, and a testing set in a ratio of 8:1:1. Test results suggested that the proposed system had a good diagnostic accuracy and a strong capability for generalization. The disease-type prediction accuracies of the top one, top three, and top five were 80.5%, 91.6%, and 94.2%, respectively. Conclusions The main contributions of the artificial intelligence–based traditional Chinese medicine assistive diagnostic system proposed in this paper are that 187 commonly known traditional Chinese medicine diseases can be diagnosed and a novel prediction method called an integrated learning model is demonstrated. This new prediction method outperformed all four existing methods in our preliminary experimental results. With further improvement of the algorithms and the availability of additional electronic health record data, it is expected that a wider range of traditional Chinese medicine disease-types could be diagnosed and that better diagnostic accuracies could be achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yvonne发布了新的文献求助10
12秒前
传奇3应助Yvonne采纳,获得10
27秒前
Yvonne完成签到,获得积分10
32秒前
宁羽发布了新的文献求助10
40秒前
zct完成签到,获得积分10
59秒前
zh完成签到,获得积分10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
1分钟前
尤里有气发布了新的文献求助10
1分钟前
1分钟前
叶千山完成签到 ,获得积分10
1分钟前
Yvonne发布了新的文献求助10
1分钟前
华仔应助Yvonne采纳,获得10
1分钟前
晨曦完成签到 ,获得积分10
1分钟前
kean1943完成签到,获得积分10
1分钟前
2分钟前
尤里有气发布了新的文献求助10
2分钟前
orixero应助宁羽采纳,获得10
2分钟前
2分钟前
宁羽1完成签到,获得积分10
2分钟前
活泼雪碧发布了新的文献求助10
2分钟前
2分钟前
宁羽完成签到,获得积分10
2分钟前
Yvonne发布了新的文献求助10
2分钟前
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
3分钟前
尤里有气发布了新的文献求助10
3分钟前
RC发布了新的文献求助10
3分钟前
tt完成签到,获得积分10
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
5分钟前
MTF完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
赘婿应助moonsea0415采纳,获得10
6分钟前
任性的紫翠完成签到,获得积分10
6分钟前
活泼雪碧完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590568
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633472
什么是DOI,文献DOI怎么找? 2532825
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468723