重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

MoDL: Model-Based Deep Learning Architecture for Inverse Problems

计算机科学 过度拟合 内存占用 共轭梯度法 正规化(语言学) 卷积神经网络 人工智能 深度学习 算法 人工神经网络 机器学习 数学优化 计算机工程 数学 操作系统
作者
Hemant Kumar Aggarwal,Merry Mani,Mathews Jacob
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (2): 394-405 被引量:988
标识
DOI:10.1109/tmi.2018.2865356
摘要

We introduce a model-based image reconstruction framework with a convolution neural network (CNN)-based regularization prior. The proposed formulation provides a systematic approach for deriving deep architectures for inverse problems with the arbitrary structure. Since the forward model is explicitly accounted for, a smaller network with fewer parameters is sufficient to capture the image information compared to direct inversion approaches. Thus, reducing the demand for training data and training time. Since we rely on end-to-end training with weight sharing across iterations, the CNN weights are customized to the forward model, thus offering improved performance over approaches that rely on pre-trained denoisers. Our experiments show that the decoupling of the number of iterations from the network complexity offered by this approach provides benefits, including lower demand for training data, reduced risk of overfitting, and implementations with significantly reduced memory footprint. We propose to enforce data-consistency by using numerical optimization blocks, such as conjugate gradients algorithm within the network. This approach offers faster convergence per iteration, compared to methods that rely on proximal gradients steps to enforce data consistency. Our experiments show that the faster convergence translates to improved performance, primarily when the available GPU memory restricts the number of iterations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小三子完成签到,获得积分10
刚刚
幽默尔蓝发布了新的文献求助10
1秒前
1秒前
1秒前
俊逸翠柏完成签到,获得积分10
2秒前
2秒前
理li完成签到,获得积分10
3秒前
3秒前
我好樊完成签到,获得积分10
3秒前
蛋卷完成签到,获得积分10
4秒前
斯文败类应助cup采纳,获得10
4秒前
4秒前
4秒前
阿海的完成签到,获得积分10
4秒前
5秒前
儒雅的兔子完成签到,获得积分10
5秒前
搜集达人应助长情智宸采纳,获得10
5秒前
zeng5288完成签到,获得积分10
5秒前
6秒前
甜美战斗机完成签到,获得积分20
6秒前
6秒前
6秒前
6秒前
田様应助sfdghik采纳,获得10
6秒前
酷波er应助布医采纳,获得10
6秒前
贪玩草丛发布了新的文献求助10
7秒前
bjyx完成签到 ,获得积分10
7秒前
慕青应助Lion采纳,获得10
7秒前
小小阿杰完成签到,获得积分10
7秒前
威武的友菱完成签到,获得积分10
7秒前
魔幻擎宇发布了新的文献求助10
8秒前
丘比特应助月光入梦采纳,获得10
8秒前
8秒前
Winnie完成签到,获得积分10
8秒前
希望天下0贩的0应助Doc_d采纳,获得10
9秒前
9秒前
9秒前
三世完成签到 ,获得积分10
10秒前
10秒前
达达完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466271
求助须知:如何正确求助?哪些是违规求助? 4570197
关于积分的说明 14323735
捐赠科研通 4496698
什么是DOI,文献DOI怎么找? 2463500
邀请新用户注册赠送积分活动 1452381
关于科研通互助平台的介绍 1427516