MoDL: Model-Based Deep Learning Architecture for Inverse Problems

计算机科学 过度拟合 内存占用 共轭梯度法 正规化(语言学) 卷积神经网络 人工智能 深度学习 算法 人工神经网络 机器学习 数学优化 计算机工程 数学 操作系统
作者
Hemant Kumar Aggarwal,Merry Mani,Mathews Jacob
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (2): 394-405 被引量:988
标识
DOI:10.1109/tmi.2018.2865356
摘要

We introduce a model-based image reconstruction framework with a convolution neural network (CNN)-based regularization prior. The proposed formulation provides a systematic approach for deriving deep architectures for inverse problems with the arbitrary structure. Since the forward model is explicitly accounted for, a smaller network with fewer parameters is sufficient to capture the image information compared to direct inversion approaches. Thus, reducing the demand for training data and training time. Since we rely on end-to-end training with weight sharing across iterations, the CNN weights are customized to the forward model, thus offering improved performance over approaches that rely on pre-trained denoisers. Our experiments show that the decoupling of the number of iterations from the network complexity offered by this approach provides benefits, including lower demand for training data, reduced risk of overfitting, and implementations with significantly reduced memory footprint. We propose to enforce data-consistency by using numerical optimization blocks, such as conjugate gradients algorithm within the network. This approach offers faster convergence per iteration, compared to methods that rely on proximal gradients steps to enforce data consistency. Our experiments show that the faster convergence translates to improved performance, primarily when the available GPU memory restricts the number of iterations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
BANG完成签到,获得积分10
1秒前
1秒前
brolliLuo发布了新的文献求助10
2秒前
清新的宛丝完成签到,获得积分10
2秒前
酷波er应助小胡采纳,获得10
5秒前
小智发布了新的文献求助10
6秒前
吴小胖发布了新的文献求助10
6秒前
顾矜应助meimei采纳,获得30
8秒前
庾摇伽完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
情怀应助吴小胖采纳,获得10
11秒前
13秒前
13秒前
13秒前
15秒前
cheng完成签到,获得积分10
15秒前
value发布了新的文献求助30
17秒前
嗯嗯发布了新的文献求助10
18秒前
细心的紫丝完成签到,获得积分10
18秒前
充电宝应助小智采纳,获得10
19秒前
gattina发布了新的文献求助10
20秒前
科目三应助adam采纳,获得10
20秒前
21秒前
22秒前
allzzwell发布了新的文献求助10
22秒前
23秒前
23秒前
李健的小迷弟应助12345tty采纳,获得10
24秒前
回穆完成签到 ,获得积分10
24秒前
小宋发布了新的文献求助10
24秒前
小蘑菇应助彤彤彤红红红采纳,获得10
25秒前
bxxxxx完成签到,获得积分10
25秒前
big烂泥完成签到,获得积分10
26秒前
27秒前
zorro3574发布了新的文献求助10
28秒前
29秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959791
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127539
捐赠科研通 3237976
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871758
科研通“疑难数据库(出版商)”最低求助积分说明 803019