MoDL: Model-Based Deep Learning Architecture for Inverse Problems

计算机科学 过度拟合 内存占用 共轭梯度法 正规化(语言学) 卷积神经网络 人工智能 深度学习 算法 人工神经网络 机器学习 数学优化 计算机工程 数学 操作系统
作者
Hemant Kumar Aggarwal,Merry Mani,Mathews Jacob
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (2): 394-405 被引量:988
标识
DOI:10.1109/tmi.2018.2865356
摘要

We introduce a model-based image reconstruction framework with a convolution neural network (CNN)-based regularization prior. The proposed formulation provides a systematic approach for deriving deep architectures for inverse problems with the arbitrary structure. Since the forward model is explicitly accounted for, a smaller network with fewer parameters is sufficient to capture the image information compared to direct inversion approaches. Thus, reducing the demand for training data and training time. Since we rely on end-to-end training with weight sharing across iterations, the CNN weights are customized to the forward model, thus offering improved performance over approaches that rely on pre-trained denoisers. Our experiments show that the decoupling of the number of iterations from the network complexity offered by this approach provides benefits, including lower demand for training data, reduced risk of overfitting, and implementations with significantly reduced memory footprint. We propose to enforce data-consistency by using numerical optimization blocks, such as conjugate gradients algorithm within the network. This approach offers faster convergence per iteration, compared to methods that rely on proximal gradients steps to enforce data consistency. Our experiments show that the faster convergence translates to improved performance, primarily when the available GPU memory restricts the number of iterations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucia完成签到,获得积分20
刚刚
1秒前
1秒前
daomaihu发布了新的文献求助30
1秒前
卜谷雪发布了新的文献求助10
1秒前
2秒前
2秒前
慕青应助澹台无采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
Nicole发布了新的文献求助10
3秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
juanlajiao发布了新的文献求助10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得80
3秒前
Orange应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
睡个好觉应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
珺珺发布了新的文献求助10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得30
4秒前
852应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
甜甜冰巧发布了新的文献求助10
4秒前
4秒前
星辰大海应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730272
求助须知:如何正确求助?哪些是违规求助? 5322398
关于积分的说明 15318370
捐赠科研通 4876855
什么是DOI,文献DOI怎么找? 2619709
邀请新用户注册赠送积分活动 1569121
关于科研通互助平台的介绍 1525755