Data-Driven Structural Health Monitoring Using Feature Fusion and Hybrid Deep Learning

计算机科学 深度学习 卷积神经网络 人工智能 特征工程 传感器融合 机器学习 希尔伯特-黄变换 内存占用 数据流挖掘 特征(语言学) 数据挖掘 模式识别(心理学) 语言学 滤波器(信号处理) 操作系统 哲学 计算机视觉
作者
Viet-Hung Dang,H. Tran-Ngoc,Nguyen Van Tung,Thanh Bui-Tien,Guido De Roeck,Huan X. Nguyen
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:18 (4): 2087-2103 被引量:97
标识
DOI:10.1109/tase.2020.3034401
摘要

Smart structural health monitoring (SHM) for large-scale infrastructure is an intriguing subject for engineering communities thanks to its significant advantages such as timely damage detection, optimal maintenance strategy, and reduced resource requirement. Yet, it is a challenging topic as it requires handling a large amount of collected sensors data continuously, which is inevitably contaminated by random noises. Therefore, this study developed a practical end-to-end framework that makes use of physical features embedded in raw data and an elaborated hybrid deep learning model, namely 1-DCNN-LSTM, featuring two algorithms—convolutional neural network (CNN) and long-short term memory (LSTM). In order to extract relevant features from sensory data, the method combines various signal processing techniques such as the autoregressive model, discrete wavelet transform, and empirical mode decomposition. The hybrid deep learning 1-DCNN-LSTM is designed based on the CNN’s capacity of capturing local information and the LSTM network’s prominent ability to learn long-term dependencies. Through three case studies involving both experimental and synthetic data sets, it is demonstrated that the proposed approach achieves highly accurate damage detection, as accurate as the powerful 2-D CNN, but with a lower time and memory complexity, making it suitable for real-time SHM. Note to Practitioners —This article aims to develop a practical data-driven method for automatically monitoring the operational state of structures. In order to achieve consistently and highly accurate results in performing different tasks for diverse structures, we combine underlying features in both time and frequency domains extracted from measured signal vibration data. Three popular data featuring methods are combined to achieve the diversity gain which would not be possible with each individual method. As the vibration is usually measured by long time-series signals, the most efficient deep learning architecture for time-series signal, namely long-short term memory (LSTM), is considered for this work. Besides, each structure has its own dynamic properties, i.e., eigenfrequencies, around which the most relevant information is in the frequency domain, thus convolutional neural network specifically designed for capturing local information is used in combination with LSTM, forming a hybrid deep learning architecture. The applicability and effectiveness of the proposed approach are supported by three case studies with different types of structures, showing highly accurate damage detection with reduced resource requirements. These advantages can be valuable for developing a model for live monitoring of structural health in the future life-line infrastructures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Tao发布了新的文献求助10
1秒前
缥缈冷亦发布了新的文献求助10
2秒前
飘逸锦程完成签到 ,获得积分10
2秒前
二牛发布了新的文献求助30
3秒前
3秒前
精明芷雪完成签到,获得积分10
3秒前
4秒前
4秒前
B1ackSugar完成签到,获得积分10
5秒前
5秒前
5秒前
和谐小霸王完成签到 ,获得积分10
5秒前
6秒前
江浪浪应助高贵花瓣采纳,获得30
6秒前
青炀完成签到,获得积分10
7秒前
思源应助佳佳采纳,获得10
8秒前
bly发布了新的文献求助10
8秒前
科研通AI2S应助yy采纳,获得10
11秒前
李健应助chaning采纳,获得10
11秒前
酷酷应助hc采纳,获得20
11秒前
12秒前
搜集达人应助我不是BOB采纳,获得50
12秒前
搜集达人应助宰宰小熊采纳,获得10
13秒前
木木彡发布了新的文献求助10
13秒前
Mastar完成签到,获得积分10
13秒前
Mayra完成签到,获得积分20
14秒前
狂飙的小蜗牛完成签到,获得积分10
15秒前
shunsui顺遂完成签到,获得积分10
17秒前
白苏发布了新的文献求助10
17秒前
义气的采文完成签到,获得积分10
18秒前
19秒前
酷波er应助花痴的裘采纳,获得10
20秒前
牛诗悦发布了新的文献求助30
20秒前
YC_Kao完成签到,获得积分10
20秒前
酷酷应助jiang采纳,获得10
21秒前
22秒前
奋斗的怀曼完成签到,获得积分10
22秒前
24秒前
yy完成签到,获得积分20
25秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140687
求助须知:如何正确求助?哪些是违规求助? 2791513
关于积分的说明 7799361
捐赠科研通 2447868
什么是DOI,文献DOI怎么找? 1302096
科研通“疑难数据库(出版商)”最低求助积分说明 626439
版权声明 601194