Deep learning for molecular design - a review of the state of the art

国家(计算机科学) 最先进的
作者
Daniel C. Elton,Zois Boukouvalas,Mark Fuge,Peter W. Chung
出处
期刊:arXiv: Learning 被引量:40
标识
DOI:10.1039/c9me00039a
摘要

In the space of only a few years, deep generative modeling has revolutionized how we think of artificial creativity, yielding autonomous systems which produce original images, music, and text. Inspired by these successes, researchers are now applying deep generative modeling techniques to the generation and optimization of molecules - in our review we found 45 papers on the subject published in the past two years. These works point to a future where such systems will be used to generate lead molecules, greatly reducing resources spent downstream synthesizing and characterizing bad leads in the lab. In this review we survey the increasingly complex landscape of models and representation schemes that have been proposed. The four classes of techniques we describe are recursive neural networks, autoencoders, generative adversarial networks, and reinforcement learning. After first discussing some of the mathematical fundamentals of each technique, we draw high level connections and comparisons with other techniques and expose the pros and cons of each. Several important high level themes emerge as a result of this work, including the shift away from the SMILES string representation of molecules towards more sophisticated representations such as graph grammars and 3D representations, the importance of reward function design, the need for better standards for benchmarking and testing, and the benefits of adversarial training and reinforcement learning over maximum likelihood based training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
WJX43完成签到,获得积分10
1秒前
阔达的茉莉关注了科研通微信公众号
1秒前
小七发布了新的文献求助10
1秒前
DNA甲基转移酶完成签到,获得积分10
2秒前
3秒前
3秒前
刘璇1发布了新的文献求助10
4秒前
Shayulajiao发布了新的文献求助10
4秒前
GGZ完成签到,获得积分10
4秒前
羽王完成签到,获得积分10
5秒前
5秒前
6秒前
成就猫咪发布了新的文献求助10
6秒前
6秒前
qurent发布了新的文献求助10
7秒前
hyy关闭了hyy文献求助
8秒前
Wang完成签到,获得积分10
9秒前
三金发布了新的文献求助10
9秒前
9秒前
了哟发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
aizhujun发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
13秒前
13秒前
qqwxp发布了新的文献求助10
13秒前
14秒前
南宫萍发布了新的文献求助10
14秒前
去码头整点薯条完成签到,获得积分10
15秒前
15秒前
卷卷516发布了新的文献求助10
15秒前
烟花应助第七个太阳采纳,获得10
16秒前
17秒前
Carol完成签到,获得积分10
17秒前
DYF发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458562
求助须知:如何正确求助?哪些是违规求助? 3053394
关于积分的说明 9036264
捐赠科研通 2742665
什么是DOI,文献DOI怎么找? 1504448
科研通“疑难数据库(出版商)”最低求助积分说明 695292
邀请新用户注册赠送积分活动 694455