Ultra-sensitive and resilient compliant strain gauges for soft machines

应变计 机制(生物学) 计算机科学 弹性(材料科学) 电阻式触摸屏 材料科学 电容感应 灵敏度(控制系统) 可穿戴计算机 复合材料 电子工程 工程类 嵌入式系统 物理 计算机视觉 操作系统 量子力学
作者
Oluwaseun A. Araromi,Moritz A. Graule,Kristen L. Dorsey,Sam Castellanos,Jonathan R. Foster,Wen‐Hao Hsu,Arthur E. Passy,Joost J. Vlassak,James C. Weaver,Conor J. Walsh,Robert J. Wood
出处
期刊:Nature [Springer Nature]
卷期号:587 (7833): 219-224 被引量:453
标识
DOI:10.1038/s41586-020-2892-6
摘要

Soft machines are a promising design paradigm for human-centric devices1,2 and systems required to interact gently with their environment3,4. To enable soft machines to respond intelligently to their surroundings, compliant sensory feedback mechanisms are needed. Specifically, soft alternatives to strain gauges—with high resolution at low strain (less than 5 per cent)—could unlock promising new capabilities in soft systems. However, currently available sensing mechanisms typically possess either high strain sensitivity or high mechanical resilience, but not both. The scarcity of resilient and compliant ultra-sensitive sensing mechanisms has confined their operation to laboratory settings, inhibiting their widespread deployment. Here we present a versatile and compliant transduction mechanism for high-sensitivity strain detection with high mechanical resilience, based on strain-mediated contact in anisotropically resistive structures (SCARS). The mechanism relies upon changes in Ohmic contact between stiff, micro-structured, anisotropically conductive meanders encapsulated by stretchable films. The mechanism achieves high sensitivity, with gauge factors greater than 85,000, while being adaptable for use with high-strength conductors, thus producing sensors resilient to adverse loading conditions. The sensing mechanism also exhibits high linearity, as well as insensitivity to bending and twisting deformations—features that are important for soft device applications. To demonstrate the potential impact of our technology, we construct a sensor-integrated, lightweight, textile-based arm sleeve that can recognize gestures without encumbering the hand. We demonstrate predictive tracking and classification of discrete gestures and continuous hand motions via detection of small muscle movements in the arm. The sleeve demonstration shows the potential of the SCARS technology for the development of unobtrusive, wearable biomechanical feedback systems and human–computer interfaces. Strain gauges with both high sensitivity and high mechanical resilience, based on strain-mediated contact in anisotropically resistive structures, are demonstrated within a sensor-integrated, textile-based sleeve that can recognize human hand motions via muscle deformations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助明理的帆布鞋采纳,获得10
2秒前
科研通AI6应助fzzf采纳,获得10
2秒前
小二郎应助北克采纳,获得10
2秒前
顾矜应助感动的小懒虫采纳,获得10
2秒前
小火花完成签到,获得积分10
3秒前
4秒前
JM关闭了JM文献求助
5秒前
烟花应助微光熠采纳,获得10
5秒前
7秒前
糊涂的汽车完成签到,获得积分10
7秒前
7秒前
愉快的花卷完成签到,获得积分10
7秒前
masro完成签到,获得积分10
8秒前
8秒前
9秒前
草帽发布了新的文献求助10
10秒前
10秒前
997发布了新的文献求助10
11秒前
机智的天蓉完成签到 ,获得积分10
11秒前
12秒前
小火花发布了新的文献求助60
12秒前
彭于晏应助Xl采纳,获得10
12秒前
李小莉0419完成签到 ,获得积分20
14秒前
14秒前
123发布了新的文献求助10
14秒前
15秒前
研友_Z7gV2Z应助qiii采纳,获得10
16秒前
赘婿应助黑化小狗采纳,获得10
16秒前
NexusExplorer应助草帽采纳,获得10
16秒前
星辰大海应助Mt采纳,获得10
18秒前
Lunjiang发布了新的文献求助10
18秒前
风清扬发布了新的文献求助10
18秒前
lucas发布了新的文献求助10
18秒前
321发布了新的文献求助10
19秒前
酷酷伟宸完成签到,获得积分10
19秒前
NexusExplorer应助123采纳,获得10
19秒前
20秒前
20秒前
顺利秋灵发布了新的文献求助10
20秒前
记得笑完成签到,获得积分10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277