Hiding individuals and communities in a social network

中心性 伪装 互联网隐私 邻里(数学) 启发式 社交网络(社会语言学) 社会网络分析 互联网 网络分析 简单(哲学) 计算机安全 计算机科学 社会学 数据科学 社会心理学 社会化媒体 心理学 万维网 人工智能 工程类 哲学 数学分析 电气工程 组合数学 认识论 数学
作者
Marcin Waniek,Tomasz Michalak,Michael Wooldridge,Talal Rahwan
出处
期刊:Nature Human Behaviour [Springer Nature]
卷期号:2 (2): 139-147 被引量:211
标识
DOI:10.1038/s41562-017-0290-3
摘要

The Internet and social media have fueled enormous interest in social network analysis. New tools continue to be developed and used to analyse our personal connections, with particular emphasis on detecting communities or identifying key individuals in a social network. This raises privacy concerns that are likely to exacerbate in the future. With this in mind, we ask the question: Can individuals or groups actively manage their connections to evade social network analysis tools? By addressing this question, the general public may better protect their privacy, oppressed activist groups may better conceal their existence, and security agencies may better understand how terrorists escape detection. We first study how an individual can evade "network centrality" analysis without compromising his or her influence within the network. We prove that an optimal solution to this problem is hard to compute. Despite this hardness, we demonstrate that even a simple heuristic, whereby attention is restricted to the individual's immediate neighbourhood, can be surprisingly effective in practice. For instance, it could disguise Mohamed Atta's leading position within the WTC terrorist network, and that is by rewiring a strikingly-small number of connections. Next, we study how a community can increase the likelihood of being overlooked by community-detection algorithms. We propose a measure of concealment, expressing how well a community is hidden, and use it to demonstrate the effectiveness of a simple heuristic, whereby members of the community either "unfriend" certain other members, or "befriend" some non-members, in a coordinated effort to camouflage their community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
998685完成签到,获得积分10
刚刚
Vyasa完成签到,获得积分10
刚刚
terence应助波波奶茶采纳,获得10
1秒前
12345完成签到,获得积分10
1秒前
落寞灰狼发布了新的文献求助10
1秒前
哭泣咖啡豆完成签到,获得积分10
1秒前
汉堡包应助CC采纳,获得10
1秒前
1秒前
信仰完成签到,获得积分10
2秒前
菲菲公主完成签到 ,获得积分10
2秒前
曾金福完成签到 ,获得积分20
3秒前
叶雨思空完成签到 ,获得积分10
3秒前
妮0001发布了新的文献求助10
4秒前
izumi发布了新的文献求助10
4秒前
科研通AI2S应助张童鞋采纳,获得10
5秒前
5秒前
7秒前
pursue发布了新的文献求助10
7秒前
balabala完成签到,获得积分20
7秒前
哭泣爆米花完成签到,获得积分10
8秒前
甜甜千兰完成签到,获得积分10
8秒前
10秒前
情怀应助66采纳,获得30
10秒前
10秒前
123完成签到,获得积分10
10秒前
10秒前
CC完成签到,获得积分10
11秒前
Gong完成签到 ,获得积分10
11秒前
12秒前
ww完成签到 ,获得积分10
12秒前
震动的鸡发布了新的文献求助10
12秒前
乔qiao完成签到,获得积分10
13秒前
13秒前
Akim应助ZHQ采纳,获得10
13秒前
落寞灰狼完成签到,获得积分10
13秒前
小蘑菇应助妮0001采纳,获得10
13秒前
米里迷路完成签到 ,获得积分10
13秒前
CC发布了新的文献求助10
14秒前
14秒前
NexusExplorer应助科研通管家采纳,获得30
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546815
求助须知:如何正确求助?哪些是违规求助? 3123829
关于积分的说明 9357111
捐赠科研通 2822447
什么是DOI,文献DOI怎么找? 1551477
邀请新用户注册赠送积分活动 723475
科研通“疑难数据库(出版商)”最低求助积分说明 713766