Development of a Non-Destructive Method for Detection of the Juiciness of Pear via VIS/NIR Spectroscopy Combined with Chemometric Methods

数学 规范化(社会学) 偏最小二乘回归 统计 近红外光谱 模式识别(心理学) 生物系统 人工智能 计算机科学 光学 人类学 生物 物理 万维网 社会学
作者
Fan Wang,Chunjiang Zhao,Guijun Yang
出处
期刊:Foods [MDPI AG]
卷期号:9 (12): 1778-1778 被引量:23
标识
DOI:10.3390/foods9121778
摘要

Juiciness is a primary index of pear quality and freshness, which is also considered as important as sweetness for the consumers. Development of a non-destructive detection method for pear juiciness is meaningful for producers and sellers. In this study, visible−near-infrared (VIS/NIR) spectroscopy combined with different spectral preprocessing methods, including normalization (NOR), first derivative (FD), detrend (DET), standard normal variate (SNV), multiplicative scatter correction (MSC), probabilistic quotient normalization (PQN), modified optical path length estimation and correction (OPLECm), linear regression correction combined with spectral ratio (LRC-SR) and orthogonal spatial projection combined with spectral ratio (OPS-SR), was used for comparison in detection of pear juiciness. Partial least squares (PLS) regression was used to establish the calibration models between the preprocessing spectra (650–1100 nm) and juiciness measured by the texture analyzer. In addition, competitive adaptive reweighted sampling (CARS) was used to identify the characteristic wavelengths and simplify the PLS models. All obtained models were evaluated via Monte Carlo cross-validation (MCCV) and external validation. The PLS model established by 19 characteristic variables after LRC-SR preprocessing displayed the best prediction performance with external verification determination coefficient (R2v) of 0.93 and root mean square error (RMSEv) of 0.97%. The results demonstrate that VIS/NIR coupled with LRC-SR method can be a suitable strategy for the quick assessment of juiciness for pears.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
56565发布了新的文献求助10
刚刚
林梓峰完成签到,获得积分10
1秒前
mxq驳回了yxy应助
1秒前
你好完成签到,获得积分10
2秒前
情怀应助高贵火儿采纳,获得10
4秒前
4秒前
良辰应助zxcvbnm采纳,获得10
5秒前
6秒前
6秒前
Lewis发布了新的文献求助10
7秒前
8秒前
10秒前
GULLIVER发布了新的文献求助10
11秒前
白色风车发布了新的文献求助10
13秒前
16秒前
是江江哥啊完成签到,获得积分10
17秒前
碳碳双键发布了新的文献求助50
17秒前
FAPI完成签到,获得积分10
18秒前
喝可乐的萝卜兔完成签到 ,获得积分10
18秒前
糊涂的剑发布了新的文献求助10
21秒前
21秒前
万能图书馆应助yl采纳,获得10
22秒前
桔子发布了新的文献求助10
25秒前
25秒前
无限安雁发布了新的文献求助10
25秒前
领导范儿应助姜姜采纳,获得10
27秒前
高贵火儿发布了新的文献求助10
27秒前
弄香发布了新的文献求助10
28秒前
Alexander完成签到,获得积分20
28秒前
31秒前
Lewis完成签到,获得积分10
31秒前
32秒前
寻舟者完成签到,获得积分10
36秒前
36秒前
37秒前
38秒前
youchgg完成签到,获得积分10
38秒前
dingm2发布了新的文献求助10
39秒前
伶俐的寒天完成签到 ,获得积分10
39秒前
40秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138489
求助须知:如何正确求助?哪些是违规求助? 2789437
关于积分的说明 7791339
捐赠科研通 2445767
什么是DOI,文献DOI怎么找? 1300644
科研通“疑难数据库(出版商)”最低求助积分说明 625975
版权声明 601079