发作性
癫痫
心率变异性
脑电图
心率
医学
心电图
金标准(测试)
麻醉
心脏病学
内科学
精神科
血压
作者
Jesper Jeppesen,Anders Fuglsang‐Frederiksen,Peter Johansen,Jakob Christensen,Stephan Wüstenhagen,Hatice Tankişi,Erisela Qerama,Sándor Beniczky
出处
期刊:Epilepsia
[Wiley]
日期:2020-05-07
卷期号:61 (S1)
被引量:38
摘要
Abstract Although several validated seizure detection algorithms are available for convulsive seizures, detection of nonconvulsive seizures remains challenging. In this phase 2 study, we have validated a predefined seizure detection algorithm based on heart rate variability (HRV) using patient‐specific cutoff values. The validation data set was independent from the previously published data set. Electrocardiography (ECG) was recorded using a wearable device (ePatch) in prospectively recruited patients. The diagnostic gold standard was inferred from video–EEG monitoring. Because HRV‐based seizure detection is suitable only for patients with marked ictal autonomic changes, we defined responders as the patients who had a>50 beats/min ictal change in heart rate. Eleven of the 19 included patients with seizures (57.9%) fulfilled this criterion. In this group, the algorithm detected 20 of the 23 seizures (sensitivity: 87.0%). The algorithm detected all but one of the 10 recorded convulsive seizures and all of the 8 focal impaired awareness seizures, and it missed 2 of the 4 focal aware seizures. The median sensitivity per patient was 100% (in nine patients all seizures were detected). The false alarm rate was 0.9/24 h (0.22/night). Our results suggest that HRV‐based seizure detection has high performance in patients with marked autonomic changes.
科研通智能强力驱动
Strongly Powered by AbleSci AI