Prediction on treatment improvement in depression with resting state connectivity: A coordinate-based meta-analysis

荟萃分析 默认模式网络 电休克疗法 扣带回前部 静息状态功能磁共振成像 神经影像学 磁刺激 重性抑郁障碍 萧条(经济学) 抗抑郁药 迷走神经电刺激 心理学 前额叶皮质 脑刺激 神经科学 子群分析 医学 精神科 临床心理学 功能连接 认知 内科学 刺激 迷走神经 经济 海马体 宏观经济学
作者
Zhiliang Long,Lian Du,Jia Zhao,Shiyang Wu,Qiaoqiao Zheng,Xu Lei
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:276: 62-68 被引量:120
标识
DOI:10.1016/j.jad.2020.06.072
摘要

Previous neuroimaging studies revealed abnormal resting-state functional connectivity between distributed brain areas in patients with major depressive disorder. Those abnormalities were normalized after treatment. Moreover, the functional connectivity could predict clinical response to those treatments. However, there has currently been no meta-analysis to verify these findings. The current study aimed to investigate how the resting-state connectivity patterns predict antidepressant response to various treatments across depressive studies by using coordinate-based meta-analysis named activation likelihood estimation. The relevant articles were obtained by searching on PubMed and Web of Science. Following exclusion criteria of inappropriate studies, seventeen papers with 392 individual depressive patients were included. Those articles contained repetitive transcranial magnetic stimulation (rTMS) treatment, pharmacotherapy, cognitive behavioral therapy (CBT), electroconvulsive therapy (ECT) and transcutaneous vagus nerve stimulation in patients with depression. Meta-analysis revealed that clinical response to all treatments could be predicted by baseline default mode network connectivity in patients with depression. The rTMS treatment had larger effect size compared to other treatment strategies. Furthermore, subgroup meta-analysis showed that the baseline connectivity of perigenual anterior cingulate cortex (pgACC) and ventral medial prefrontal cortex could predict symptoms improvement of rTMS treatment. More resting-state connectivity studies of CBT and ECT treatment are needed. This study highlighted crucial role of DMN, especially the pgACC, in understanding the underlying treatment mechanism of depression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助yilin采纳,获得10
1秒前
完美世界应助奔跑西木采纳,获得10
1秒前
lily发布了新的文献求助10
1秒前
lzf发布了新的文献求助10
1秒前
2秒前
斯文的人英完成签到,获得积分10
2秒前
3秒前
3秒前
蓝天发布了新的文献求助10
3秒前
3秒前
4秒前
科研通AI2S应助hky采纳,获得10
4秒前
星辰大海应助king采纳,获得10
6秒前
ZZG应助陌路孤星采纳,获得10
7秒前
murrayss发布了新的文献求助10
7秒前
waerteyang完成签到,获得积分10
8秒前
我叫杨二虎完成签到,获得积分10
8秒前
8秒前
Akim应助小启采纳,获得10
8秒前
阿松大发布了新的文献求助10
8秒前
wanci应助耍酷的友卉采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
谦让元槐发布了新的文献求助10
9秒前
9秒前
赘婿应助舒适香露采纳,获得10
10秒前
CR7应助生而追梦不止采纳,获得20
10秒前
可爱的函函应助碧蓝青梦采纳,获得10
11秒前
11秒前
11秒前
噢噢完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
追风完成签到,获得积分10
12秒前
12秒前
齐齐完成签到,获得积分10
12秒前
12秒前
李爱国应助乐天采纳,获得10
13秒前
nuaa_shy应助hu采纳,获得10
13秒前
秋风烈马完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759349
求助须知:如何正确求助?哪些是违规求助? 5519823
关于积分的说明 15393808
捐赠科研通 4896421
什么是DOI,文献DOI怎么找? 2633690
邀请新用户注册赠送积分活动 1581712
关于科研通互助平台的介绍 1537250