Prediction on treatment improvement in depression with resting state connectivity: A coordinate-based meta-analysis

荟萃分析 默认模式网络 电休克疗法 扣带回前部 静息状态功能磁共振成像 神经影像学 磁刺激 重性抑郁障碍 萧条(经济学) 抗抑郁药 迷走神经电刺激 心理学 前额叶皮质 脑刺激 神经科学 子群分析 医学 精神科 临床心理学 功能连接 认知 内科学 刺激 迷走神经 经济 海马体 宏观经济学
作者
Zhiliang Long,Lian Du,Jia Zhao,Shiyang Wu,Qiaoqiao Zheng,Xu Lei
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:276: 62-68 被引量:120
标识
DOI:10.1016/j.jad.2020.06.072
摘要

Previous neuroimaging studies revealed abnormal resting-state functional connectivity between distributed brain areas in patients with major depressive disorder. Those abnormalities were normalized after treatment. Moreover, the functional connectivity could predict clinical response to those treatments. However, there has currently been no meta-analysis to verify these findings. The current study aimed to investigate how the resting-state connectivity patterns predict antidepressant response to various treatments across depressive studies by using coordinate-based meta-analysis named activation likelihood estimation. The relevant articles were obtained by searching on PubMed and Web of Science. Following exclusion criteria of inappropriate studies, seventeen papers with 392 individual depressive patients were included. Those articles contained repetitive transcranial magnetic stimulation (rTMS) treatment, pharmacotherapy, cognitive behavioral therapy (CBT), electroconvulsive therapy (ECT) and transcutaneous vagus nerve stimulation in patients with depression. Meta-analysis revealed that clinical response to all treatments could be predicted by baseline default mode network connectivity in patients with depression. The rTMS treatment had larger effect size compared to other treatment strategies. Furthermore, subgroup meta-analysis showed that the baseline connectivity of perigenual anterior cingulate cortex (pgACC) and ventral medial prefrontal cortex could predict symptoms improvement of rTMS treatment. More resting-state connectivity studies of CBT and ECT treatment are needed. This study highlighted crucial role of DMN, especially the pgACC, in understanding the underlying treatment mechanism of depression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随便完成签到,获得积分10
刚刚
1秒前
Akim应助糯米糍采纳,获得10
1秒前
大模型应助糯米糍采纳,获得30
1秒前
CodeCraft应助吴倩采纳,获得10
1秒前
深情安青应助糯米糍采纳,获得10
1秒前
情怀应助糯米糍采纳,获得10
1秒前
小马甲应助糯米糍采纳,获得10
1秒前
1秒前
ding应助糯米糍采纳,获得10
1秒前
teriteri完成签到,获得积分10
2秒前
华仔应助风清扬采纳,获得10
2秒前
CipherSage应助执着书南采纳,获得10
3秒前
asd发布了新的文献求助30
3秒前
3秒前
科研通AI6应助玉潭湖水怪采纳,获得10
3秒前
沁晏发布了新的文献求助10
4秒前
AnasYusuf完成签到,获得积分10
4秒前
66发布了新的文献求助10
6秒前
6秒前
6秒前
嘿嘿发布了新的文献求助10
8秒前
随便发布了新的文献求助10
8秒前
顺心凡之完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
faiting完成签到 ,获得积分10
12秒前
aaaaaa发布了新的文献求助50
12秒前
12秒前
13秒前
13秒前
赘婿应助Hiiiiii采纳,获得10
14秒前
小程同学发布了新的文献求助10
14秒前
15秒前
大模型应助沁晏采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
17秒前
刘雪晴发布了新的文献求助10
18秒前
爆米花应助靓仔采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680518
求助须知:如何正确求助?哪些是违规求助? 4999851
关于积分的说明 15173281
捐赠科研通 4840442
什么是DOI,文献DOI怎么找? 2594093
邀请新用户注册赠送积分活动 1547105
关于科研通互助平台的介绍 1505090