Prediction on treatment improvement in depression with resting state connectivity: A coordinate-based meta-analysis

荟萃分析 默认模式网络 电休克疗法 扣带回前部 静息状态功能磁共振成像 神经影像学 磁刺激 重性抑郁障碍 萧条(经济学) 抗抑郁药 迷走神经电刺激 心理学 前额叶皮质 脑刺激 神经科学 子群分析 医学 精神科 临床心理学 功能连接 认知 内科学 刺激 迷走神经 经济 海马体 宏观经济学
作者
Zhiliang Long,Lian Du,Jia Zhao,Shiyang Wu,Qiaoqiao Zheng,Xu Lei
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:276: 62-68 被引量:120
标识
DOI:10.1016/j.jad.2020.06.072
摘要

Previous neuroimaging studies revealed abnormal resting-state functional connectivity between distributed brain areas in patients with major depressive disorder. Those abnormalities were normalized after treatment. Moreover, the functional connectivity could predict clinical response to those treatments. However, there has currently been no meta-analysis to verify these findings. The current study aimed to investigate how the resting-state connectivity patterns predict antidepressant response to various treatments across depressive studies by using coordinate-based meta-analysis named activation likelihood estimation. The relevant articles were obtained by searching on PubMed and Web of Science. Following exclusion criteria of inappropriate studies, seventeen papers with 392 individual depressive patients were included. Those articles contained repetitive transcranial magnetic stimulation (rTMS) treatment, pharmacotherapy, cognitive behavioral therapy (CBT), electroconvulsive therapy (ECT) and transcutaneous vagus nerve stimulation in patients with depression. Meta-analysis revealed that clinical response to all treatments could be predicted by baseline default mode network connectivity in patients with depression. The rTMS treatment had larger effect size compared to other treatment strategies. Furthermore, subgroup meta-analysis showed that the baseline connectivity of perigenual anterior cingulate cortex (pgACC) and ventral medial prefrontal cortex could predict symptoms improvement of rTMS treatment. More resting-state connectivity studies of CBT and ECT treatment are needed. This study highlighted crucial role of DMN, especially the pgACC, in understanding the underlying treatment mechanism of depression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助小龚热心肠采纳,获得10
刚刚
SciGPT应助玖玖采纳,获得10
刚刚
123完成签到,获得积分10
刚刚
刚刚
小船发布了新的文献求助10
刚刚
Jasper应助Dr_Han采纳,获得10
刚刚
刚刚
JamesPei应助清欢采纳,获得30
1秒前
汉堡包应助zzzyc采纳,获得10
1秒前
lifeng发布了新的文献求助10
3秒前
3秒前
Antil发布了新的文献求助10
4秒前
奋斗的铅笔完成签到 ,获得积分10
4秒前
Kidom发布了新的文献求助10
4秒前
李爱国应助老10采纳,获得10
5秒前
zhangjing发布了新的文献求助10
5秒前
贪玩白萱发布了新的文献求助10
5秒前
6秒前
丰富的长颈鹿完成签到,获得积分10
7秒前
Owen应助途_采纳,获得10
7秒前
隐形曼青应助nihao采纳,获得10
7秒前
研友_VZG7GZ应助nihao采纳,获得10
7秒前
orixero应助nihao采纳,获得10
7秒前
zsr完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
大个应助左白易采纳,获得10
10秒前
科研辣鸡发布了新的文献求助10
10秒前
zzzyc完成签到,获得积分10
11秒前
嘎嘎嘎发布了新的文献求助10
11秒前
圆圆懒羊羊完成签到,获得积分10
11秒前
丘比特应助SCIER采纳,获得30
12秒前
安AN完成签到,获得积分10
12秒前
mwn发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
传奇3应助kk采纳,获得30
13秒前
冷酷的盼夏完成签到,获得积分10
13秒前
zzzyc发布了新的文献求助10
13秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583647
求助须知:如何正确求助?哪些是违规求助? 4667408
关于积分的说明 14767165
捐赠科研通 4609652
什么是DOI,文献DOI怎么找? 2529376
邀请新用户注册赠送积分活动 1498492
关于科研通互助平台的介绍 1467170