Prediction on treatment improvement in depression with resting state connectivity: A coordinate-based meta-analysis

荟萃分析 默认模式网络 电休克疗法 扣带回前部 静息状态功能磁共振成像 神经影像学 磁刺激 重性抑郁障碍 萧条(经济学) 抗抑郁药 迷走神经电刺激 心理学 前额叶皮质 脑刺激 神经科学 子群分析 医学 精神科 临床心理学 功能连接 认知 内科学 刺激 迷走神经 经济 海马体 宏观经济学
作者
Zhiliang Long,Lian Du,Jia Zhao,Shiyang Wu,Qiaoqiao Zheng,Xu Lei
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:276: 62-68 被引量:120
标识
DOI:10.1016/j.jad.2020.06.072
摘要

Previous neuroimaging studies revealed abnormal resting-state functional connectivity between distributed brain areas in patients with major depressive disorder. Those abnormalities were normalized after treatment. Moreover, the functional connectivity could predict clinical response to those treatments. However, there has currently been no meta-analysis to verify these findings. The current study aimed to investigate how the resting-state connectivity patterns predict antidepressant response to various treatments across depressive studies by using coordinate-based meta-analysis named activation likelihood estimation. The relevant articles were obtained by searching on PubMed and Web of Science. Following exclusion criteria of inappropriate studies, seventeen papers with 392 individual depressive patients were included. Those articles contained repetitive transcranial magnetic stimulation (rTMS) treatment, pharmacotherapy, cognitive behavioral therapy (CBT), electroconvulsive therapy (ECT) and transcutaneous vagus nerve stimulation in patients with depression. Meta-analysis revealed that clinical response to all treatments could be predicted by baseline default mode network connectivity in patients with depression. The rTMS treatment had larger effect size compared to other treatment strategies. Furthermore, subgroup meta-analysis showed that the baseline connectivity of perigenual anterior cingulate cortex (pgACC) and ventral medial prefrontal cortex could predict symptoms improvement of rTMS treatment. More resting-state connectivity studies of CBT and ECT treatment are needed. This study highlighted crucial role of DMN, especially the pgACC, in understanding the underlying treatment mechanism of depression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gaochuwuyu01完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
丰富伊完成签到,获得积分10
1秒前
bamboo完成签到,获得积分10
2秒前
luo发布了新的文献求助10
2秒前
lll发布了新的文献求助10
2秒前
明理珩发布了新的文献求助10
2秒前
3秒前
3秒前
爱学习发布了新的文献求助10
3秒前
左鸣发布了新的文献求助10
4秒前
赫哲瀚发布了新的文献求助30
4秒前
刻苦大门完成签到 ,获得积分10
5秒前
可靠F完成签到,获得积分20
5秒前
ccon完成签到,获得积分10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助30
7秒前
干爆瓶颈发布了新的文献求助10
7秒前
Ava应助alu采纳,获得10
7秒前
深情安青应助xixi采纳,获得10
8秒前
公西翠萱发布了新的文献求助10
8秒前
喵喵发布了新的文献求助10
8秒前
科研通AI2S应助miao3718采纳,获得10
9秒前
研友_VZG7GZ应助koi采纳,获得10
9秒前
9秒前
wuyi完成签到,获得积分10
9秒前
9秒前
搜集达人应助牛牛牛采纳,获得10
10秒前
叶子麻发布了新的文献求助10
10秒前
整齐碧玉发布了新的文献求助10
10秒前
10秒前
深情安青应助悦耳听芹采纳,获得10
11秒前
天天向上发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
null完成签到,获得积分10
11秒前
荷包蛋完成签到,获得积分20
11秒前
星辰大海应助zhang-leo采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719543
求助须知:如何正确求助?哪些是违规求助? 5256663
关于积分的说明 15288927
捐赠科研通 4869380
什么是DOI,文献DOI怎么找? 2614754
邀请新用户注册赠送积分活动 1564750
关于科研通互助平台的介绍 1521972