Prediction on treatment improvement in depression with resting state connectivity: A coordinate-based meta-analysis

荟萃分析 默认模式网络 电休克疗法 扣带回前部 静息状态功能磁共振成像 神经影像学 磁刺激 重性抑郁障碍 萧条(经济学) 抗抑郁药 迷走神经电刺激 心理学 前额叶皮质 脑刺激 神经科学 子群分析 医学 精神科 临床心理学 功能连接 认知 内科学 刺激 迷走神经 经济 海马体 宏观经济学
作者
Zhiliang Long,Lian Du,Jia Zhao,Shiyang Wu,Qiaoqiao Zheng,Xu Lei
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:276: 62-68 被引量:120
标识
DOI:10.1016/j.jad.2020.06.072
摘要

Previous neuroimaging studies revealed abnormal resting-state functional connectivity between distributed brain areas in patients with major depressive disorder. Those abnormalities were normalized after treatment. Moreover, the functional connectivity could predict clinical response to those treatments. However, there has currently been no meta-analysis to verify these findings. The current study aimed to investigate how the resting-state connectivity patterns predict antidepressant response to various treatments across depressive studies by using coordinate-based meta-analysis named activation likelihood estimation. The relevant articles were obtained by searching on PubMed and Web of Science. Following exclusion criteria of inappropriate studies, seventeen papers with 392 individual depressive patients were included. Those articles contained repetitive transcranial magnetic stimulation (rTMS) treatment, pharmacotherapy, cognitive behavioral therapy (CBT), electroconvulsive therapy (ECT) and transcutaneous vagus nerve stimulation in patients with depression. Meta-analysis revealed that clinical response to all treatments could be predicted by baseline default mode network connectivity in patients with depression. The rTMS treatment had larger effect size compared to other treatment strategies. Furthermore, subgroup meta-analysis showed that the baseline connectivity of perigenual anterior cingulate cortex (pgACC) and ventral medial prefrontal cortex could predict symptoms improvement of rTMS treatment. More resting-state connectivity studies of CBT and ECT treatment are needed. This study highlighted crucial role of DMN, especially the pgACC, in understanding the underlying treatment mechanism of depression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈瑞鸥完成签到,获得积分10
刚刚
充电宝应助欣慰冬亦采纳,获得10
1秒前
清瑜完成签到,获得积分10
2秒前
高高的哈密瓜完成签到 ,获得积分10
2秒前
钟琪发布了新的文献求助10
3秒前
炙热的远侵完成签到,获得积分10
3秒前
苏亚婷发布了新的文献求助10
4秒前
酷波er应助科研通管家采纳,获得10
5秒前
茂茂应助科研通管家采纳,获得10
5秒前
kongxiangjiu应助科研通管家采纳,获得50
5秒前
自由依秋应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
Mic应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
5秒前
大致若鱼应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
Mic应助科研通管家采纳,获得10
6秒前
spwan应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
shhoing应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
风中冰香应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
Mic应助科研通管家采纳,获得10
6秒前
6秒前
Orange应助科研通管家采纳,获得10
6秒前
不穷知识完成签到,获得积分10
6秒前
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
6秒前
6秒前
lllllria应助xixi采纳,获得10
9秒前
卓奕雯完成签到 ,获得积分10
9秒前
garmenchan完成签到,获得积分10
10秒前
sun完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539603
求助须知:如何正确求助?哪些是违规求助? 4626418
关于积分的说明 14599161
捐赠科研通 4567232
什么是DOI,文献DOI怎么找? 2503948
邀请新用户注册赠送积分活动 1481684
关于科研通互助平台的介绍 1453312