Prediction on treatment improvement in depression with resting state connectivity: A coordinate-based meta-analysis

荟萃分析 默认模式网络 电休克疗法 扣带回前部 静息状态功能磁共振成像 神经影像学 磁刺激 重性抑郁障碍 萧条(经济学) 抗抑郁药 迷走神经电刺激 心理学 前额叶皮质 脑刺激 神经科学 子群分析 医学 精神科 临床心理学 功能连接 认知 内科学 刺激 迷走神经 经济 海马体 宏观经济学
作者
Zhiliang Long,Lian Du,Jia Zhao,Shiyang Wu,Qiaoqiao Zheng,Xu Lei
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:276: 62-68 被引量:120
标识
DOI:10.1016/j.jad.2020.06.072
摘要

Previous neuroimaging studies revealed abnormal resting-state functional connectivity between distributed brain areas in patients with major depressive disorder. Those abnormalities were normalized after treatment. Moreover, the functional connectivity could predict clinical response to those treatments. However, there has currently been no meta-analysis to verify these findings. The current study aimed to investigate how the resting-state connectivity patterns predict antidepressant response to various treatments across depressive studies by using coordinate-based meta-analysis named activation likelihood estimation. The relevant articles were obtained by searching on PubMed and Web of Science. Following exclusion criteria of inappropriate studies, seventeen papers with 392 individual depressive patients were included. Those articles contained repetitive transcranial magnetic stimulation (rTMS) treatment, pharmacotherapy, cognitive behavioral therapy (CBT), electroconvulsive therapy (ECT) and transcutaneous vagus nerve stimulation in patients with depression. Meta-analysis revealed that clinical response to all treatments could be predicted by baseline default mode network connectivity in patients with depression. The rTMS treatment had larger effect size compared to other treatment strategies. Furthermore, subgroup meta-analysis showed that the baseline connectivity of perigenual anterior cingulate cortex (pgACC) and ventral medial prefrontal cortex could predict symptoms improvement of rTMS treatment. More resting-state connectivity studies of CBT and ECT treatment are needed. This study highlighted crucial role of DMN, especially the pgACC, in understanding the underlying treatment mechanism of depression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷酷问薇完成签到,获得积分20
刚刚
1秒前
耍酷千亦完成签到 ,获得积分10
1秒前
DengJJJ完成签到,获得积分10
1秒前
英姑应助甜蜜阑悦采纳,获得10
1秒前
金锐发布了新的文献求助10
1秒前
老迟到的发带完成签到,获得积分10
2秒前
懒骨头兄应助郭京京采纳,获得10
3秒前
4秒前
南山完成签到,获得积分10
4秒前
勤奋的诗珊完成签到,获得积分10
4秒前
自由飞阳发布了新的文献求助50
5秒前
酸海椒完成签到,获得积分10
6秒前
机智冬瓜发布了新的文献求助10
6秒前
新嘟完成签到,获得积分10
7秒前
9秒前
9秒前
dtcao发布了新的文献求助10
9秒前
茗泠发布了新的文献求助200
10秒前
Qiancheng完成签到,获得积分10
10秒前
香蕉觅云应助汪勇采纳,获得10
10秒前
SciGPT应助michael采纳,获得150
11秒前
11秒前
wuxueyi完成签到,获得积分10
11秒前
Chloe完成签到,获得积分0
12秒前
Left完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
6666应助有酒采纳,获得10
14秒前
虚心飞鸟完成签到,获得积分10
14秒前
Kittymiaoo发布了新的文献求助10
15秒前
JamesPei应助23采纳,获得10
15秒前
JHL发布了新的文献求助10
15秒前
斯文的白玉完成签到,获得积分10
16秒前
汉堡包应助川川采纳,获得10
17秒前
茗泠完成签到,获得积分10
18秒前
平淡乐儿完成签到,获得积分10
19秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618509
求助须知:如何正确求助?哪些是违规求助? 4703442
关于积分的说明 14922480
捐赠科研通 4757656
什么是DOI,文献DOI怎么找? 2550107
邀请新用户注册赠送积分活动 1512947
关于科研通互助平台的介绍 1474299