Prediction on treatment improvement in depression with resting state connectivity: A coordinate-based meta-analysis

荟萃分析 默认模式网络 电休克疗法 扣带回前部 静息状态功能磁共振成像 神经影像学 磁刺激 重性抑郁障碍 萧条(经济学) 抗抑郁药 迷走神经电刺激 心理学 前额叶皮质 脑刺激 神经科学 子群分析 医学 精神科 临床心理学 功能连接 认知 内科学 刺激 迷走神经 经济 海马体 宏观经济学
作者
Zhiliang Long,Lian Du,Jia Zhao,Shiyang Wu,Qiaoqiao Zheng,Xu Lei
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:276: 62-68 被引量:120
标识
DOI:10.1016/j.jad.2020.06.072
摘要

Previous neuroimaging studies revealed abnormal resting-state functional connectivity between distributed brain areas in patients with major depressive disorder. Those abnormalities were normalized after treatment. Moreover, the functional connectivity could predict clinical response to those treatments. However, there has currently been no meta-analysis to verify these findings. The current study aimed to investigate how the resting-state connectivity patterns predict antidepressant response to various treatments across depressive studies by using coordinate-based meta-analysis named activation likelihood estimation. The relevant articles were obtained by searching on PubMed and Web of Science. Following exclusion criteria of inappropriate studies, seventeen papers with 392 individual depressive patients were included. Those articles contained repetitive transcranial magnetic stimulation (rTMS) treatment, pharmacotherapy, cognitive behavioral therapy (CBT), electroconvulsive therapy (ECT) and transcutaneous vagus nerve stimulation in patients with depression. Meta-analysis revealed that clinical response to all treatments could be predicted by baseline default mode network connectivity in patients with depression. The rTMS treatment had larger effect size compared to other treatment strategies. Furthermore, subgroup meta-analysis showed that the baseline connectivity of perigenual anterior cingulate cortex (pgACC) and ventral medial prefrontal cortex could predict symptoms improvement of rTMS treatment. More resting-state connectivity studies of CBT and ECT treatment are needed. This study highlighted crucial role of DMN, especially the pgACC, in understanding the underlying treatment mechanism of depression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xavier发布了新的文献求助10
1秒前
zmy完成签到,获得积分10
1秒前
欲扬先抑发布了新的文献求助10
1秒前
CodeCraft应助钱大大采纳,获得10
1秒前
端庄新柔发布了新的文献求助10
2秒前
慕青应助悦耳青梦采纳,获得10
2秒前
3秒前
黄辉冯完成签到,获得积分10
4秒前
Lucas完成签到,获得积分10
4秒前
蟹蟹发布了新的文献求助10
4秒前
帅气书白发布了新的文献求助10
4秒前
shiqi发布了新的文献求助10
5秒前
5秒前
5秒前
jeniffer完成签到,获得积分10
6秒前
酷波er应助端庄新柔采纳,获得10
8秒前
guohh发布了新的文献求助20
8秒前
8秒前
彩色觅荷完成签到,获得积分10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
leslie应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得30
10秒前
BareBear应助科研通管家采纳,获得10
10秒前
10秒前
1111111111应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
BareBear应助科研通管家采纳,获得10
10秒前
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
Frim发布了新的文献求助10
10秒前
英姑应助水123采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601468
求助须知:如何正确求助?哪些是违规求助? 4686975
关于积分的说明 14846893
捐赠科研通 4681115
什么是DOI,文献DOI怎么找? 2539378
邀请新用户注册赠送积分活动 1506298
关于科研通互助平台的介绍 1471297