Prediction on treatment improvement in depression with resting state connectivity: A coordinate-based meta-analysis

荟萃分析 默认模式网络 电休克疗法 扣带回前部 静息状态功能磁共振成像 神经影像学 磁刺激 重性抑郁障碍 萧条(经济学) 抗抑郁药 迷走神经电刺激 心理学 前额叶皮质 脑刺激 神经科学 子群分析 医学 精神科 临床心理学 功能连接 认知 内科学 刺激 迷走神经 经济 海马体 宏观经济学
作者
Zhiliang Long,Lian Du,Jia Zhao,Shiyang Wu,Qiaoqiao Zheng,Xu Lei
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:276: 62-68 被引量:120
标识
DOI:10.1016/j.jad.2020.06.072
摘要

Previous neuroimaging studies revealed abnormal resting-state functional connectivity between distributed brain areas in patients with major depressive disorder. Those abnormalities were normalized after treatment. Moreover, the functional connectivity could predict clinical response to those treatments. However, there has currently been no meta-analysis to verify these findings. The current study aimed to investigate how the resting-state connectivity patterns predict antidepressant response to various treatments across depressive studies by using coordinate-based meta-analysis named activation likelihood estimation. The relevant articles were obtained by searching on PubMed and Web of Science. Following exclusion criteria of inappropriate studies, seventeen papers with 392 individual depressive patients were included. Those articles contained repetitive transcranial magnetic stimulation (rTMS) treatment, pharmacotherapy, cognitive behavioral therapy (CBT), electroconvulsive therapy (ECT) and transcutaneous vagus nerve stimulation in patients with depression. Meta-analysis revealed that clinical response to all treatments could be predicted by baseline default mode network connectivity in patients with depression. The rTMS treatment had larger effect size compared to other treatment strategies. Furthermore, subgroup meta-analysis showed that the baseline connectivity of perigenual anterior cingulate cortex (pgACC) and ventral medial prefrontal cortex could predict symptoms improvement of rTMS treatment. More resting-state connectivity studies of CBT and ECT treatment are needed. This study highlighted crucial role of DMN, especially the pgACC, in understanding the underlying treatment mechanism of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助橙子采纳,获得10
1秒前
甜甜玫瑰应助yuaasusanaann采纳,获得10
1秒前
王小志发布了新的文献求助10
2秒前
chen完成签到,获得积分10
2秒前
打打应助qq采纳,获得10
2秒前
2秒前
2秒前
3秒前
爱撒娇的长颈鹿完成签到,获得积分10
3秒前
5秒前
zzz关注了科研通微信公众号
5秒前
Chirstina完成签到,获得积分10
7秒前
小蘑菇应助xcz采纳,获得10
8秒前
甘木鸣发布了新的文献求助10
8秒前
8秒前
脆脆鲨完成签到 ,获得积分10
8秒前
Venus发布了新的文献求助10
8秒前
nichen发布了新的文献求助10
9秒前
脑洞疼应助meihui采纳,获得10
10秒前
共享精神应助哈哈采纳,获得10
12秒前
Venus完成签到,获得积分10
14秒前
xiao5424liu完成签到 ,获得积分10
14秒前
Tim完成签到,获得积分10
15秒前
盛盛发布了新的文献求助10
15秒前
天天快乐应助聪慧道罡采纳,获得10
16秒前
大模型应助ylq采纳,获得10
19秒前
Besty完成签到,获得积分10
19秒前
善学以致用应助yuaasusanaann采纳,获得10
20秒前
20秒前
zzl1111完成签到,获得积分10
20秒前
youyuer完成签到,获得积分10
20秒前
21秒前
Kate发布了新的文献求助10
22秒前
wanwan应助心如采纳,获得10
24秒前
24秒前
JJ完成签到,获得积分10
25秒前
youyuer发布了新的文献求助10
25秒前
酱酱发布了新的文献求助10
26秒前
所所应助xiao5424liu采纳,获得10
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992317
求助须知:如何正确求助?哪些是违规求助? 3533285
关于积分的说明 11261852
捐赠科研通 3272704
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459