Modeling the Impact of Lock-down on COVID-19 Spread in Malaysia

Lift(数据挖掘) 2019年冠状病毒病(COVID-19) 锁(火器) 大流行 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 中国 基本再生数 流行病模型 计算机科学 地理 传染病(医学专业) 业务 医学 环境卫生 疾病 人口 考古 病理 数据挖掘
作者
Altahir A. Altahir,Nirbhay Mathur,Loshini Thiruchelvam,Ghulam E Mustafa Abro,Syaimaa' Solehah Mohd Radzi,Sarat C. Dass,Balvinder Singh Gill,Patrick Sebastian,Saiful A. Zulkifli,Vijanth Sagayan Asirvadam
标识
DOI:10.1101/2020.07.17.208371
摘要

Abstract After a breakdown notified in Wuhan, China in December 2019, COVID-19 is declared as pandemic diseases. To the date more than 13 million confirmed cases and more than half a million are dead around the world. This virus also attached Malaysia in its immature stage where 8718 cases were confirmed and 122 were declared as death. Malaysia responsibly controlled the spread by enforcing MCO. Hence, it is required to visualize the pattern of Covid-19 spread. Also, it is necessary to estimate the impact of the enforced prevention measures. In this paper, an infectious disease dynamic modeling (SEIR) is used to estimate the epidemic spread in Malaysia. The main assumption is to update the reproduction number Rt with respect to the implemented prevention measures. For a time-frame of five month, the Rt was assumed to vary between 2.9 and 0.3. Moreover, the manuscript includes two possible scenarios: the first will be the extension of the stricter measures all over the country, and the second will be the gradual lift of the lock-down. After implementing several stages of lock-down we have found that the estimated values of the Rt with respect to the strictness degree varies between 0.2 to 1.1. A continuous strict lock-down may reduce the Rt to 0.2 and accordingly the estimated active cases will be reduced to 20 by the beginning of September 2020. In contrast, the second scenario considers a gradual lift of the enforced prevention measures by the end of June 2020, here we have considered three possible outcomes according to the MCO relaxation. Thus, the estimated values of Rt = 0.7, 0.9, 1.1, which shows a rapid increase in the number of active cases. The implemented SEIR model shows a close resemblance with the actual data recorded from 10, March till 7, July 2020. Author summary Conceptualization, A.A.A; methodology, A.A.A, N.M; validation, A.A.A, N.M; formal analysis, A.A.A; investigation, N.M, A.A.A; resources, G.E.M.A, L.T; data collection, L.T, N.M; writing—original draft preparation, A.A.A, L.T, G.E.M.A, N.M; writing—review and editing, V.S.A, S.C.D, B.S.G, P.S, S.A.B.M.Z, N.M; visualization, N.M; supervision, V.S.A; project administration, V.S.A. All authors have read and agreed to the published version of the manuscript

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汪汪完成签到,获得积分10
刚刚
刚刚
赵本毅发布了新的文献求助10
刚刚
1秒前
2秒前
木木三完成签到,获得积分10
2秒前
Jessie完成签到,获得积分10
2秒前
慕青应助冷风寒清采纳,获得20
2秒前
qqq发布了新的文献求助20
2秒前
一只渣狗发布了新的文献求助10
3秒前
思源应助诚c采纳,获得10
3秒前
dddsssaaa发布了新的文献求助10
3秒前
陈杰驳回了Akim应助
3秒前
3秒前
ceeray23应助李d1_采纳,获得10
4秒前
结实初夏发布了新的文献求助10
4秒前
luk发布了新的文献求助10
5秒前
麻辣香锅发布了新的文献求助10
5秒前
5秒前
6秒前
SciGPT应助教授采纳,获得10
7秒前
科研通AI2S应助hhh采纳,获得10
7秒前
8秒前
8秒前
好运来完成签到 ,获得积分10
8秒前
耍酷傲菡完成签到 ,获得积分10
8秒前
9秒前
清脆的水蜜桃完成签到,获得积分10
9秒前
桐桐应助cheesy采纳,获得10
10秒前
10秒前
qitaas发布了新的文献求助10
11秒前
11秒前
XINWU发布了新的文献求助10
12秒前
12秒前
勇闯SCI一区完成签到,获得积分10
12秒前
霍师傅发布了新的文献求助10
12秒前
瘦瘦荟完成签到,获得积分10
12秒前
13秒前
探寻完成签到,获得积分10
13秒前
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610911
求助须知:如何正确求助?哪些是违规求助? 4695350
关于积分的说明 14886541
捐赠科研通 4723667
什么是DOI,文献DOI怎么找? 2545322
邀请新用户注册赠送积分活动 1510085
关于科研通互助平台的介绍 1473121