Detecting and mitigating poisoning attacks in federated learning using generative adversarial networks

计算机科学 上传 MNIST数据库 对抗制 任务(项目管理) 人工智能 联合学习 机器学习 审计 GSM演进的增强数据速率 计算机安全 深度学习 对手 万维网 工程类 经济 管理 系统工程
作者
Ying Zhao,Junjun Chen,Jiale Zhang,Di Wu,Michael Blumenstein,Shui Yu
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:34 (7) 被引量:38
标识
DOI:10.1002/cpe.5906
摘要

Summary In the age of the Internet of Things (IoT), large numbers of sensors and edge devices are deployed in various application scenarios; Therefore, collaborative learning is widely used in IoT to implement crowd intelligence by inviting multiple participants to complete a training task. As a collaborative learning framework, federated learning is designed to preserve user data privacy, where participants jointly train a global model without uploading their private training data to a third party server. Nevertheless, federated learning is under the threat of poisoning attacks, where adversaries can upload malicious model updates to contaminate the global model. To detect and mitigate poisoning attacks in federated learning, we propose a poisoning defense mechanism, which uses generative adversarial networks to generate auditing data in the training procedure and removes adversaries by auditing their model accuracy. Experiments conducted on two well‐known datasets, MNIST and Fashion‐MNIST, suggest that federated learning is vulnerable to the poisoning attack, and the proposed defense method can detect and mitigate the poisoning attack.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助handsomecat采纳,获得10
刚刚
刚刚
李雪完成签到,获得积分10
1秒前
1秒前
sv发布了新的文献求助10
3秒前
小田完成签到,获得积分10
3秒前
茶茶完成签到,获得积分20
3秒前
苏兴龙完成签到,获得积分10
3秒前
坚强的亦云-333完成签到,获得积分10
3秒前
Ava应助dan1029采纳,获得10
4秒前
4秒前
4秒前
奶糖最可爱完成签到,获得积分10
5秒前
5秒前
mojomars发布了新的文献求助10
6秒前
幽壑之潜蛟应助茶茶采纳,获得10
6秒前
7秒前
7秒前
7秒前
迅速海云完成签到,获得积分10
7秒前
sjxx发布了新的文献求助10
7秒前
7秒前
乐乐应助Rachel采纳,获得10
8秒前
8秒前
8秒前
天天快乐应助孤独的珩采纳,获得10
9秒前
帅气鹭洋发布了新的文献求助20
9秒前
10秒前
孙悦发布了新的文献求助10
10秒前
知性的绮兰完成签到,获得积分10
10秒前
10秒前
11秒前
Zzzoey完成签到,获得积分10
12秒前
12秒前
12秒前
英姑应助桂魄采纳,获得10
12秒前
12秒前
流北爷发布了新的文献求助10
13秒前
开心完成签到,获得积分10
13秒前
gguc发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794