The design and synthesis of multifunctional nanocarriers for efficient synergistic cancer therapy have drawn great research interests in recent years. In this work, a nanoplatform for chemo-photothermal therapy with targeting ligand was developed. Hollow porous structured silica nanotubes (SNTs) with controllable lengths decorated with CuS nanoparticles (NPs) on the surface as photothermal agents were prepared and further conjugated with lactobionic acid groups as a cancer cell target. SNTs with average lengths of 40, 55 and 150 nm were obtained and further functionalized as drug carriers. The smallest bifunctional SNTs with targeting groups show good biocompatibility and highest cellular uptake for HepG2 cells. The release of doxorubicin hydrochloride (DOX) from the SNTs was dependent on the pH of the buffer solution and 808-nm near infrared (NIR) light irradiation. The integration of photothermal therapy (PTT) of CuS NPs and chemotherapy of anticancer drug leads to a better tumor inhibition effect than the individual therapy alone in vitro and in vivo. These results demonstrate potential applications of the nanocomposites as vector for efficient chemo-photothermal therapy.