合成孔径雷达
计算机科学
干涉合成孔径雷达
分割
相(物质)
人工智能
深度学习
干涉测量
模棱两可
计算
算法
雷达成像
相位展开
雷达
计算机视觉
光学
电信
化学
物理
有机化学
程序设计语言
作者
Ziwen Zhang,Jiang Qian,Yong Wang,Xiaobo Yang
标识
DOI:10.1109/igarss39084.2020.9323569
摘要
Phase unwrapping (PU) transforms wrapped phase into the real one, so that the products of interferometric synthetic aperture radar (InSAR) can provide meaningful information, such as surface height and deformation. By analyzing the characteristics of phase integer modulus, we propose a new phase unwrapping algorithm which combines deep learning and region segmentation with ambiguity number. Because this algorithm calculates the ambiguity number directly, it can improve the phase preserving property of the unwrapped phase and greatly reduce the computation complexity. The simulation and real data experimental results demonstrate the effectiveness of our methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI