A convolutional neural network-based method for workpiece surface defect detection

卷积神经网络 卷积(计算机科学) 计算机科学 模式识别(心理学) 人工智能 CLs上限 曲面(拓扑) 人工神经网络 数学 医学 几何学 验光服务
作者
Junjie Xing,Minping Jia
出处
期刊:Measurement [Elsevier]
卷期号:176: 109185-109185 被引量:91
标识
DOI:10.1016/j.measurement.2021.109185
摘要

The surface defects of the workpiece affect the workpiece quality. In order to detect workpiece surface defects more accurately, an automatic detection convolutional neural networks-based method is proposed in this paper. Firstly, a convolution network classification model (SCN) with symmetric modules is proposed, which is used as backbone of our method to extract features. And then, three convolution branches with FPN structure are used to identify the features. Finally, an optimized IOU (XIoU) is designed to define the loss function, which is used for detection model training. In addition to the public datasets NEU-CLS and NEU-DET, a classification dataset and a detection dataset of surface defects on hearth of raw aluminum casting are established to train and evaluate our model. On the basis above, the proposed backbone SCN was compared with Darknet-53 and ResNet-101 to present its superiority in classification performance. The average accuracy of SCN on NEU-CLS and self-made data sets are 99.61% and 95.84% respectively, which is significantly higher than the other two classification models. Then, in order to show the effectiveness and superiority of the proposed automatic detection method, the detection performance of the method is compared with the Faster-RCNN series and the YOLOv3 series. The result shows that our model achieves 79.89% mAP on NEU-DET and 78.44% mAP on self-made detection dataset. Our model can detect at 23f/s when the input image size is 416 × 416 × 3. The detection performance of our model is significantly better than other models. The results show that the proposed method has better performance and can be used for real-time automatic detection of workpiece surface defects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眯眯眼的宛白完成签到,获得积分20
1秒前
3秒前
我崽了你发布了新的文献求助30
4秒前
5秒前
fanf完成签到,获得积分10
6秒前
完美世界应助mayun95采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
ashin17发布了新的文献求助10
10秒前
10秒前
科研通AI2S应助cxw采纳,获得10
12秒前
12秒前
呼噜呼噜毛完成签到 ,获得积分10
14秒前
14秒前
烟花应助QinQin采纳,获得10
14秒前
JamesPei应助猪猪hero采纳,获得10
15秒前
15秒前
16秒前
黄颖完成签到,获得积分10
16秒前
18秒前
19秒前
CodeCraft应助Nora采纳,获得10
20秒前
灵巧帽子发布了新的文献求助20
21秒前
小吴同学发布了新的文献求助10
23秒前
黄芪2号完成签到,获得积分10
23秒前
23秒前
23秒前
Jes完成签到,获得积分10
24秒前
凶狠的棒棒糖关注了科研通微信公众号
24秒前
谦让雨柏完成签到 ,获得积分10
24秒前
24秒前
25秒前
25秒前
黄芪2号发布了新的文献求助10
26秒前
微笑翠桃发布了新的文献求助10
27秒前
浅蓝色的盛夏完成签到 ,获得积分10
28秒前
wen完成签到,获得积分10
28秒前
张123完成签到,获得积分10
30秒前
古月完成签到,获得积分10
30秒前
Cristina2024完成签到,获得积分10
31秒前
ssy发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716