A convolutional neural network-based method for workpiece surface defect detection

卷积神经网络 卷积(计算机科学) 计算机科学 模式识别(心理学) 人工智能 CLs上限 曲面(拓扑) 人工神经网络 数学 几何学 医学 验光服务
作者
Junjie Xing,Minping Jia
出处
期刊:Measurement [Elsevier]
卷期号:176: 109185-109185 被引量:91
标识
DOI:10.1016/j.measurement.2021.109185
摘要

The surface defects of the workpiece affect the workpiece quality. In order to detect workpiece surface defects more accurately, an automatic detection convolutional neural networks-based method is proposed in this paper. Firstly, a convolution network classification model (SCN) with symmetric modules is proposed, which is used as backbone of our method to extract features. And then, three convolution branches with FPN structure are used to identify the features. Finally, an optimized IOU (XIoU) is designed to define the loss function, which is used for detection model training. In addition to the public datasets NEU-CLS and NEU-DET, a classification dataset and a detection dataset of surface defects on hearth of raw aluminum casting are established to train and evaluate our model. On the basis above, the proposed backbone SCN was compared with Darknet-53 and ResNet-101 to present its superiority in classification performance. The average accuracy of SCN on NEU-CLS and self-made data sets are 99.61% and 95.84% respectively, which is significantly higher than the other two classification models. Then, in order to show the effectiveness and superiority of the proposed automatic detection method, the detection performance of the method is compared with the Faster-RCNN series and the YOLOv3 series. The result shows that our model achieves 79.89% mAP on NEU-DET and 78.44% mAP on self-made detection dataset. Our model can detect at 23f/s when the input image size is 416 × 416 × 3. The detection performance of our model is significantly better than other models. The results show that the proposed method has better performance and can be used for real-time automatic detection of workpiece surface defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏源智完成签到,获得积分10
刚刚
Andy完成签到 ,获得积分10
2秒前
明理晓霜发布了新的文献求助10
4秒前
ZHANGMANLI0422关注了科研通微信公众号
4秒前
M先生发布了新的文献求助30
5秒前
FashionBoy应助许多知识采纳,获得10
6秒前
Poyd完成签到,获得积分10
9秒前
9秒前
故意的傲玉应助tao_blue采纳,获得10
10秒前
10秒前
kid1912完成签到,获得积分0
10秒前
小马甲应助一网小海蜇采纳,获得10
13秒前
专一的笑阳完成签到 ,获得积分10
13秒前
xuesensu完成签到 ,获得积分10
17秒前
豌豆完成签到,获得积分10
18秒前
M先生完成签到,获得积分10
18秒前
19秒前
21秒前
科研通AI5应助sun采纳,获得10
21秒前
shitzu完成签到 ,获得积分10
22秒前
choco发布了新的文献求助10
24秒前
25秒前
李健的小迷弟应助sun采纳,获得10
25秒前
Jzhang应助liyuchen采纳,获得10
25秒前
魏伯安发布了新的文献求助30
25秒前
jjjjjj发布了新的文献求助30
27秒前
28秒前
伯赏诗霜发布了新的文献求助10
28秒前
糟糕的鹏飞完成签到 ,获得积分10
29秒前
29秒前
欢呼凡旋完成签到,获得积分10
30秒前
韩邹光完成签到,获得积分10
32秒前
xg发布了新的文献求助10
32秒前
33秒前
dktrrrr完成签到,获得积分10
33秒前
季生完成签到,获得积分10
36秒前
徐徐完成签到,获得积分10
36秒前
37秒前
37秒前
haku完成签到,获得积分10
39秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849