亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A convolutional neural network-based method for workpiece surface defect detection

卷积神经网络 卷积(计算机科学) 计算机科学 模式识别(心理学) 人工智能 CLs上限 曲面(拓扑) 人工神经网络 数学 几何学 医学 验光服务
作者
Junjie Xing,Minping Jia
出处
期刊:Measurement [Elsevier]
卷期号:176: 109185-109185 被引量:91
标识
DOI:10.1016/j.measurement.2021.109185
摘要

The surface defects of the workpiece affect the workpiece quality. In order to detect workpiece surface defects more accurately, an automatic detection convolutional neural networks-based method is proposed in this paper. Firstly, a convolution network classification model (SCN) with symmetric modules is proposed, which is used as backbone of our method to extract features. And then, three convolution branches with FPN structure are used to identify the features. Finally, an optimized IOU (XIoU) is designed to define the loss function, which is used for detection model training. In addition to the public datasets NEU-CLS and NEU-DET, a classification dataset and a detection dataset of surface defects on hearth of raw aluminum casting are established to train and evaluate our model. On the basis above, the proposed backbone SCN was compared with Darknet-53 and ResNet-101 to present its superiority in classification performance. The average accuracy of SCN on NEU-CLS and self-made data sets are 99.61% and 95.84% respectively, which is significantly higher than the other two classification models. Then, in order to show the effectiveness and superiority of the proposed automatic detection method, the detection performance of the method is compared with the Faster-RCNN series and the YOLOv3 series. The result shows that our model achieves 79.89% mAP on NEU-DET and 78.44% mAP on self-made detection dataset. Our model can detect at 23f/s when the input image size is 416 × 416 × 3. The detection performance of our model is significantly better than other models. The results show that the proposed method has better performance and can be used for real-time automatic detection of workpiece surface defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
123发布了新的文献求助10
10秒前
35秒前
爆米花应助科研通管家采纳,获得10
2分钟前
JamesPei应助......采纳,获得10
2分钟前
2分钟前
......发布了新的文献求助10
2分钟前
2分钟前
......完成签到,获得积分10
2分钟前
科研通AI2S应助盛景洲采纳,获得10
4分钟前
4分钟前
5分钟前
小王子发布了新的文献求助10
5分钟前
5分钟前
cxwong发布了新的文献求助10
6分钟前
领导范儿应助甜甜的金鑫采纳,获得10
6分钟前
FashionBoy应助cxwong采纳,获得10
6分钟前
jojo665完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
ding应助h5采纳,获得10
6分钟前
Kevin完成签到,获得积分10
6分钟前
winkyyang完成签到 ,获得积分10
6分钟前
大模型应助飞快的孱采纳,获得10
6分钟前
7分钟前
贝儿完成签到 ,获得积分10
7分钟前
含蓄飞槐完成签到 ,获得积分10
8分钟前
8分钟前
飞快的孱发布了新的文献求助10
8分钟前
kuoping完成签到,获得积分10
8分钟前
balzacsun发布了新的文献求助10
8分钟前
balzacsun完成签到,获得积分20
9分钟前
9分钟前
9分钟前
claud完成签到 ,获得积分10
9分钟前
pumpkin完成签到 ,获得积分10
10分钟前
乐乐应助qiuxuan100采纳,获得10
11分钟前
11分钟前
qiuxuan100发布了新的文献求助10
11分钟前
阔阔完成签到,获得积分10
11分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257010
求助须知:如何正确求助?哪些是违规求助? 2899010
关于积分的说明 8303302
捐赠科研通 2568267
什么是DOI,文献DOI怎么找? 1394995
科研通“疑难数据库(出版商)”最低求助积分说明 652925
邀请新用户注册赠送积分活动 630662