A convolutional neural network-based method for workpiece surface defect detection

卷积神经网络 卷积(计算机科学) 计算机科学 模式识别(心理学) 人工智能 CLs上限 曲面(拓扑) 人工神经网络 数学 医学 几何学 验光服务
作者
Junjie Xing,Minping Jia
出处
期刊:Measurement [Elsevier BV]
卷期号:176: 109185-109185 被引量:91
标识
DOI:10.1016/j.measurement.2021.109185
摘要

The surface defects of the workpiece affect the workpiece quality. In order to detect workpiece surface defects more accurately, an automatic detection convolutional neural networks-based method is proposed in this paper. Firstly, a convolution network classification model (SCN) with symmetric modules is proposed, which is used as backbone of our method to extract features. And then, three convolution branches with FPN structure are used to identify the features. Finally, an optimized IOU (XIoU) is designed to define the loss function, which is used for detection model training. In addition to the public datasets NEU-CLS and NEU-DET, a classification dataset and a detection dataset of surface defects on hearth of raw aluminum casting are established to train and evaluate our model. On the basis above, the proposed backbone SCN was compared with Darknet-53 and ResNet-101 to present its superiority in classification performance. The average accuracy of SCN on NEU-CLS and self-made data sets are 99.61% and 95.84% respectively, which is significantly higher than the other two classification models. Then, in order to show the effectiveness and superiority of the proposed automatic detection method, the detection performance of the method is compared with the Faster-RCNN series and the YOLOv3 series. The result shows that our model achieves 79.89% mAP on NEU-DET and 78.44% mAP on self-made detection dataset. Our model can detect at 23f/s when the input image size is 416 × 416 × 3. The detection performance of our model is significantly better than other models. The results show that the proposed method has better performance and can be used for real-time automatic detection of workpiece surface defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
giugiu发布了新的文献求助10
2秒前
Meihi_Uesugi发布了新的文献求助10
2秒前
czz完成签到,获得积分20
2秒前
3秒前
3秒前
czz发布了新的文献求助30
6秒前
7秒前
斯文败类应助曾经的慕灵采纳,获得10
8秒前
顾末发布了新的文献求助10
9秒前
大个应助独角兽采纳,获得10
11秒前
李博完成签到,获得积分10
11秒前
鹏笑发布了新的文献求助10
11秒前
13秒前
田様应助shinn采纳,获得10
13秒前
w_sea发布了新的文献求助10
17秒前
尹沐完成签到 ,获得积分10
17秒前
giugiu完成签到 ,获得积分20
17秒前
Yu_Chengju完成签到,获得积分10
18秒前
666应助渊思采纳,获得10
20秒前
21秒前
上官若男应助王蕊采纳,获得10
21秒前
所所应助一言矣采纳,获得20
21秒前
思源应助tatami采纳,获得10
21秒前
23秒前
科研通AI5应助enli采纳,获得10
24秒前
Meihi_Uesugi完成签到,获得积分10
24秒前
25秒前
27秒前
28秒前
29秒前
麻师长发布了新的文献求助10
31秒前
yar应助杭谷波采纳,获得10
31秒前
独角兽发布了新的文献求助10
31秒前
Tian111完成签到,获得积分10
31秒前
科研通AI5应助jiao采纳,获得50
31秒前
32秒前
32秒前
王蕊发布了新的文献求助10
33秒前
赘婿应助胡树采纳,获得10
33秒前
半夏007发布了新的文献求助10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967699
求助须知:如何正确求助?哪些是违规求助? 3512860
关于积分的说明 11165281
捐赠科研通 3247897
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804550