清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A convolutional neural network-based method for workpiece surface defect detection

卷积神经网络 卷积(计算机科学) 计算机科学 模式识别(心理学) 人工智能 CLs上限 曲面(拓扑) 人工神经网络 数学 医学 几何学 验光服务
作者
Junjie Xing,Minping Jia
出处
期刊:Measurement [Elsevier]
卷期号:176: 109185-109185 被引量:91
标识
DOI:10.1016/j.measurement.2021.109185
摘要

The surface defects of the workpiece affect the workpiece quality. In order to detect workpiece surface defects more accurately, an automatic detection convolutional neural networks-based method is proposed in this paper. Firstly, a convolution network classification model (SCN) with symmetric modules is proposed, which is used as backbone of our method to extract features. And then, three convolution branches with FPN structure are used to identify the features. Finally, an optimized IOU (XIoU) is designed to define the loss function, which is used for detection model training. In addition to the public datasets NEU-CLS and NEU-DET, a classification dataset and a detection dataset of surface defects on hearth of raw aluminum casting are established to train and evaluate our model. On the basis above, the proposed backbone SCN was compared with Darknet-53 and ResNet-101 to present its superiority in classification performance. The average accuracy of SCN on NEU-CLS and self-made data sets are 99.61% and 95.84% respectively, which is significantly higher than the other two classification models. Then, in order to show the effectiveness and superiority of the proposed automatic detection method, the detection performance of the method is compared with the Faster-RCNN series and the YOLOv3 series. The result shows that our model achieves 79.89% mAP on NEU-DET and 78.44% mAP on self-made detection dataset. Our model can detect at 23f/s when the input image size is 416 × 416 × 3. The detection performance of our model is significantly better than other models. The results show that the proposed method has better performance and can be used for real-time automatic detection of workpiece surface defects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
thginK9z完成签到,获得积分10
4秒前
mzhang2完成签到 ,获得积分10
8秒前
科研通AI2S应助科研通管家采纳,获得30
20秒前
打打应助hamliton采纳,获得10
40秒前
53秒前
1分钟前
Jasper应助贝利亚采纳,获得10
1分钟前
只如初完成签到 ,获得积分10
1分钟前
Jessica完成签到,获得积分10
2分钟前
2分钟前
小young完成签到 ,获得积分0
2分钟前
2分钟前
婉莹完成签到 ,获得积分0
2分钟前
披着羊皮的狼完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
Tales完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
蝎子莱莱xth完成签到,获得积分10
5分钟前
5分钟前
5分钟前
贝利亚发布了新的文献求助10
6分钟前
6分钟前
muriel完成签到,获得积分0
6分钟前
如歌完成签到,获得积分10
6分钟前
ding应助科研通管家采纳,获得10
6分钟前
6分钟前
zhhua完成签到,获得积分10
6分钟前
pegasus0802完成签到,获得积分10
6分钟前
6分钟前
7分钟前
深情安青应助贝利亚采纳,获得10
7分钟前
8分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
8分钟前
8分钟前
8分钟前
Square完成签到,获得积分10
8分钟前
fishuae发布了新的文献求助10
8分钟前
研友_VZG7GZ应助fishuae采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529345
求助须知:如何正确求助?哪些是违规求助? 4618466
关于积分的说明 14562674
捐赠科研通 4557530
什么是DOI,文献DOI怎么找? 2497595
邀请新用户注册赠送积分活动 1477751
关于科研通互助平台的介绍 1449240