A convolutional neural network-based method for workpiece surface defect detection

卷积神经网络 卷积(计算机科学) 计算机科学 模式识别(心理学) 人工智能 CLs上限 曲面(拓扑) 人工神经网络 数学 医学 几何学 验光服务
作者
Junjie Xing,Minping Jia
出处
期刊:Measurement [Elsevier]
卷期号:176: 109185-109185 被引量:91
标识
DOI:10.1016/j.measurement.2021.109185
摘要

The surface defects of the workpiece affect the workpiece quality. In order to detect workpiece surface defects more accurately, an automatic detection convolutional neural networks-based method is proposed in this paper. Firstly, a convolution network classification model (SCN) with symmetric modules is proposed, which is used as backbone of our method to extract features. And then, three convolution branches with FPN structure are used to identify the features. Finally, an optimized IOU (XIoU) is designed to define the loss function, which is used for detection model training. In addition to the public datasets NEU-CLS and NEU-DET, a classification dataset and a detection dataset of surface defects on hearth of raw aluminum casting are established to train and evaluate our model. On the basis above, the proposed backbone SCN was compared with Darknet-53 and ResNet-101 to present its superiority in classification performance. The average accuracy of SCN on NEU-CLS and self-made data sets are 99.61% and 95.84% respectively, which is significantly higher than the other two classification models. Then, in order to show the effectiveness and superiority of the proposed automatic detection method, the detection performance of the method is compared with the Faster-RCNN series and the YOLOv3 series. The result shows that our model achieves 79.89% mAP on NEU-DET and 78.44% mAP on self-made detection dataset. Our model can detect at 23f/s when the input image size is 416 × 416 × 3. The detection performance of our model is significantly better than other models. The results show that the proposed method has better performance and can be used for real-time automatic detection of workpiece surface defects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅过吴彦祖完成签到,获得积分10
1秒前
风趣霆完成签到,获得积分10
2秒前
欢呼妙菱完成签到,获得积分10
3秒前
科研通AI6应助云云采纳,获得10
3秒前
贲孱完成签到,获得积分10
3秒前
Dearjw1655完成签到,获得积分10
4秒前
围城完成签到 ,获得积分10
4秒前
鲲鹏完成签到 ,获得积分10
6秒前
Hzml完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
爱沉淀的太阳花完成签到,获得积分10
7秒前
xueshidaheng完成签到,获得积分0
9秒前
无极微光应助白华苍松采纳,获得20
11秒前
kaiqiang完成签到,获得积分0
11秒前
鸡蛋酱完成签到 ,获得积分10
13秒前
溪泉完成签到,获得积分10
16秒前
16秒前
草木发布了新的文献求助10
16秒前
kyt完成签到 ,获得积分10
18秒前
咄咄完成签到 ,获得积分10
20秒前
笑点低的凉面完成签到,获得积分10
22秒前
23秒前
23秒前
EricSai完成签到,获得积分10
23秒前
chenkj完成签到,获得积分10
23秒前
ikun完成签到,获得积分10
23秒前
研友_ZA2B68完成签到,获得积分0
24秒前
zz完成签到 ,获得积分10
24秒前
小成完成签到 ,获得积分10
25秒前
heyseere完成签到,获得积分10
25秒前
Brief完成签到,获得积分0
25秒前
李新颖完成签到 ,获得积分10
26秒前
樊樊是渣子完成签到 ,获得积分20
26秒前
翟闻雨完成签到,获得积分10
27秒前
jkaaa完成签到,获得积分10
27秒前
28秒前
饱满绮波完成签到 ,获得积分10
28秒前
风信子完成签到,获得积分10
29秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590