A convolutional neural network-based method for workpiece surface defect detection

卷积神经网络 卷积(计算机科学) 计算机科学 模式识别(心理学) 人工智能 CLs上限 曲面(拓扑) 人工神经网络 数学 医学 几何学 验光服务
作者
Junjie Xing,Minping Jia
出处
期刊:Measurement [Elsevier BV]
卷期号:176: 109185-109185 被引量:91
标识
DOI:10.1016/j.measurement.2021.109185
摘要

The surface defects of the workpiece affect the workpiece quality. In order to detect workpiece surface defects more accurately, an automatic detection convolutional neural networks-based method is proposed in this paper. Firstly, a convolution network classification model (SCN) with symmetric modules is proposed, which is used as backbone of our method to extract features. And then, three convolution branches with FPN structure are used to identify the features. Finally, an optimized IOU (XIoU) is designed to define the loss function, which is used for detection model training. In addition to the public datasets NEU-CLS and NEU-DET, a classification dataset and a detection dataset of surface defects on hearth of raw aluminum casting are established to train and evaluate our model. On the basis above, the proposed backbone SCN was compared with Darknet-53 and ResNet-101 to present its superiority in classification performance. The average accuracy of SCN on NEU-CLS and self-made data sets are 99.61% and 95.84% respectively, which is significantly higher than the other two classification models. Then, in order to show the effectiveness and superiority of the proposed automatic detection method, the detection performance of the method is compared with the Faster-RCNN series and the YOLOv3 series. The result shows that our model achieves 79.89% mAP on NEU-DET and 78.44% mAP on self-made detection dataset. Our model can detect at 23f/s when the input image size is 416 × 416 × 3. The detection performance of our model is significantly better than other models. The results show that the proposed method has better performance and can be used for real-time automatic detection of workpiece surface defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
shuaige完成签到,获得积分10
1秒前
myy发布了新的文献求助10
2秒前
yuli完成签到,获得积分10
2秒前
小懒虫发布了新的文献求助20
3秒前
田様应助jxxx采纳,获得10
3秒前
mof发布了新的文献求助30
4秒前
4秒前
浮游应助不要碧莲采纳,获得10
4秒前
yzzz0218完成签到,获得积分10
4秒前
4秒前
6秒前
完美世界应助知悉采纳,获得10
6秒前
秦萍发布了新的文献求助10
6秒前
勤奋幻柏发布了新的文献求助10
7秒前
135gcl发布了新的文献求助10
7秒前
王元发布了新的文献求助10
8秒前
苏云云完成签到,获得积分10
8秒前
香蕉觅云应助myy采纳,获得10
9秒前
SciGPT应助ZCLIN采纳,获得10
9秒前
yuanziqiao发布了新的文献求助10
9秒前
No发布了新的文献求助10
9秒前
蕊蕊发布了新的文献求助10
9秒前
9秒前
10秒前
左嫣娆完成签到,获得积分10
10秒前
五十完成签到,获得积分10
11秒前
wln发布了新的文献求助10
12秒前
12秒前
lee发布了新的文献求助10
13秒前
FashionBoy应助mof采纳,获得10
14秒前
15秒前
15秒前
NAP关闭了NAP文献求助
16秒前
宋佳发布了新的文献求助10
16秒前
17秒前
完美世界应助cong1216采纳,获得10
17秒前
搜集达人应助越前龙马采纳,获得30
18秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896059
求助须知:如何正确求助?哪些是违规求助? 4177744
关于积分的说明 12969118
捐赠科研通 3940959
什么是DOI,文献DOI怎么找? 2162070
邀请新用户注册赠送积分活动 1180465
关于科研通互助平台的介绍 1086034