A convolutional neural network-based method for workpiece surface defect detection

卷积神经网络 卷积(计算机科学) 计算机科学 模式识别(心理学) 人工智能 CLs上限 曲面(拓扑) 人工神经网络 数学 医学 几何学 验光服务
作者
Junjie Xing,Minping Jia
出处
期刊:Measurement [Elsevier BV]
卷期号:176: 109185-109185 被引量:91
标识
DOI:10.1016/j.measurement.2021.109185
摘要

The surface defects of the workpiece affect the workpiece quality. In order to detect workpiece surface defects more accurately, an automatic detection convolutional neural networks-based method is proposed in this paper. Firstly, a convolution network classification model (SCN) with symmetric modules is proposed, which is used as backbone of our method to extract features. And then, three convolution branches with FPN structure are used to identify the features. Finally, an optimized IOU (XIoU) is designed to define the loss function, which is used for detection model training. In addition to the public datasets NEU-CLS and NEU-DET, a classification dataset and a detection dataset of surface defects on hearth of raw aluminum casting are established to train and evaluate our model. On the basis above, the proposed backbone SCN was compared with Darknet-53 and ResNet-101 to present its superiority in classification performance. The average accuracy of SCN on NEU-CLS and self-made data sets are 99.61% and 95.84% respectively, which is significantly higher than the other two classification models. Then, in order to show the effectiveness and superiority of the proposed automatic detection method, the detection performance of the method is compared with the Faster-RCNN series and the YOLOv3 series. The result shows that our model achieves 79.89% mAP on NEU-DET and 78.44% mAP on self-made detection dataset. Our model can detect at 23f/s when the input image size is 416 × 416 × 3. The detection performance of our model is significantly better than other models. The results show that the proposed method has better performance and can be used for real-time automatic detection of workpiece surface defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
VDC发布了新的文献求助10
1秒前
香蕉觅云应助zz采纳,获得10
1秒前
科研通AI6应助凉皮拌饭采纳,获得10
2秒前
李爱国应助善良的静柏采纳,获得10
2秒前
上官若男应助yc采纳,获得10
2秒前
妥妥酱完成签到,获得积分10
3秒前
dzc完成签到,获得积分10
4秒前
yk发布了新的文献求助10
7秒前
胜男完成签到,获得积分10
7秒前
8秒前
8秒前
DiH完成签到,获得积分10
8秒前
9秒前
明天不熬夜完成签到,获得积分10
10秒前
郭泓嵩完成签到,获得积分10
11秒前
11秒前
11秒前
樱桃小贩完成签到,获得积分0
12秒前
苹果发夹完成签到 ,获得积分10
13秒前
13秒前
张胡星发布了新的文献求助10
14秒前
15秒前
赘婿应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
wy.he应助科研通管家采纳,获得20
16秒前
16秒前
16秒前
PU聚氨酯完成签到,获得积分10
17秒前
小耿完成签到,获得积分20
18秒前
科研通AI5应助怪味痘采纳,获得10
18秒前
19秒前
Elvin2527给Elvin2527的求助进行了留言
20秒前
量子星尘发布了新的文献求助10
22秒前
机智的乌发布了新的文献求助10
22秒前
RJ完成签到,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4574269
求助须知:如何正确求助?哪些是违规求助? 3994309
关于积分的说明 12365141
捐赠科研通 3667553
什么是DOI,文献DOI怎么找? 2021284
邀请新用户注册赠送积分活动 1055423
科研通“疑难数据库(出版商)”最低求助积分说明 942833