癌变
癌症研究
流式细胞术
紫杉醇
细胞生长
基因敲除
细胞凋亡
基因沉默
下调和上调
免疫印迹
肺癌
细胞
分子生物学
化学
生物
医学
癌症
肿瘤科
内科学
基因
生物化学
作者
Chunhong Guo,Hailiang Wang,Housen Jiang,Liang Qiao,Xiaodong Wang
标识
DOI:10.1089/cbr.2019.3546
摘要
Background: Non-small cell lung cancer (NSCLC) is the most prevalent cancer in the world. Chemotherapy resistance is a major obstacle to NSCLC therapy. This study explored the role and molecular mechanism of circular RNA 0011292 (circ_0011292) in tumorigenesis and chemoresistance of NSCLC. Methods: The levels of circ_0011292, miR-379-5p, and tripartite motif-containing protein 65 (TRIM65) were measured by quantitative real-time polymerase chain reaction or Western blot assay. Cell proliferation was assessed by Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis was monitored by flow cytometry. Cell migration and invasion were detected by transwell assay. The levels of apoptosis-related and epithelial-mesenchymal transition-related proteins were examined by Western blot. The half-inhibition concentration (IC50) of paclitaxel (PTX) was evaluated by CCK-8 assay. Xenograft model was established to analyze the effect of circ_0011292 on PTX resistance of NSCLC in vivo. The interaction among circ_0011292, miR-379-5p, and TRIM65 was verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. Results: Circ_0011292 and TRIM65 were upregulated, while miR-379-5p was downregulated in NSCLC tissues and cells. Circ_0011292 knockdown hindered NSCLC progression and enhanced PTX sensitivity of NSCLC. Circ_0011292 silencing reduced PTX resistance in vivo. Besides, miR-379-5p potentiated PTX sensitivity by targeting TRIM65. Also, circ_0011292 increased PTX resistance by sponging miR-379-5p. Conclusion: Circ_0011292 facilitated tumorigenesis and PTX resistance in NSCLC by regulating the miR-379-5p/TRIM65 axis, suggesting that circ_0011292 was a promising therapeutic target for NSCLC chemotherapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI