Gene correlation network analysis to identify regulatory factors in sepsis.

医学 基因调控网络 生物信息学 相关性 基因表达
作者
Zhongheng Zhang,Lin Chen,Ping Xu,Lifeng Xing,Yucai Hong,Pengpeng Chen
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:18 (1): 381-381 被引量:5
标识
DOI:10.1186/s12967-020-02561-z
摘要

Sepsis is a leading cause of mortality and morbidity in the intensive care unit. Regulatory mechanisms underlying the disease progression and prognosis are largely unknown. The study aimed to identify master regulators of mortality-related modules, providing potential therapeutic target for further translational experiments. The dataset GSE65682 from the Gene Expression Omnibus (GEO) database was utilized for bioinformatic analysis. Consensus weighted gene co-expression netwoek analysis (WGCNA) was performed to identify modules of sepsis. The module most significantly associated with mortality were further analyzed for the identification of master regulators of transcription factors and miRNA. A total number of 682 subjects with various causes of sepsis were included for consensus WGCNA analysis, which identified 27 modules. The network was well preserved among different causes of sepsis. Two modules designated as black and light yellow module were found to be associated with mortality outcome. Key regulators of the black and light yellow modules were the transcription factor CEBPB (normalized enrichment score = 5.53) and ETV6 (NES = 6), respectively. The top 5 miRNA regulated the most number of genes were hsa-miR-335-5p (n = 59), hsa-miR-26b-5p (n = 57), hsa-miR-16-5p (n = 44), hsa-miR-17-5p (n = 42), and hsa-miR-124-3p (n = 38). Clustering analysis in 2-dimension space derived from manifold learning identified two subclasses of sepsis, which showed significant association with survival in Cox proportional hazard model (p = 0.018). The present study showed that the black and light-yellow modules were significantly associated with mortality outcome. Master regulators of the module included transcription factor CEBPB and ETV6. miRNA-target interactions identified significantly enriched miRNA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃吃完成签到 ,获得积分10
1秒前
1秒前
桐桐应助饼饼又在睡觉采纳,获得10
2秒前
4秒前
甜美元冬完成签到,获得积分20
5秒前
科研通AI2S应助ZHANES采纳,获得10
5秒前
莫若舞完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
星辰大海应助小红采纳,获得10
7秒前
七七发布了新的文献求助10
7秒前
hh0发布了新的文献求助10
8秒前
害羞的火龙果完成签到,获得积分10
8秒前
甜美元冬发布了新的文献求助10
9秒前
9秒前
幽默尔蓉完成签到,获得积分10
10秒前
10秒前
威威完成签到,获得积分10
11秒前
11秒前
12秒前
草原狼发布了新的文献求助200
12秒前
nnn25发布了新的文献求助10
12秒前
SinPain-完成签到,获得积分10
13秒前
忧虑的代芙完成签到,获得积分10
13秒前
艺术家发布了新的文献求助10
14秒前
英俊的铭应助吕健采纳,获得30
14秒前
hh0发布了新的文献求助10
15秒前
15秒前
16秒前
科研小白白完成签到,获得积分10
16秒前
Rewi_Zhang完成签到,获得积分10
16秒前
16秒前
lina发布了新的文献求助10
17秒前
yu001完成签到,获得积分10
17秒前
士艳完成签到,获得积分10
18秒前
lz完成签到,获得积分10
18秒前
务实的以松完成签到,获得积分10
19秒前
19秒前
筱筱发布了新的文献求助10
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245593
求助须知:如何正确求助?哪些是违规求助? 2889202
关于积分的说明 8257407
捐赠科研通 2557563
什么是DOI,文献DOI怎么找? 1386245
科研通“疑难数据库(出版商)”最低求助积分说明 650285
邀请新用户注册赠送积分活动 626578