Gene correlation network analysis to identify regulatory factors in sepsis.

医学 基因调控网络 生物信息学 相关性 基因表达
作者
Zhongheng Zhang,Lin Chen,Ping Xu,Lifeng Xing,Yucai Hong,Pengpeng Chen
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:18 (1): 381-381 被引量:5
标识
DOI:10.1186/s12967-020-02561-z
摘要

Sepsis is a leading cause of mortality and morbidity in the intensive care unit. Regulatory mechanisms underlying the disease progression and prognosis are largely unknown. The study aimed to identify master regulators of mortality-related modules, providing potential therapeutic target for further translational experiments. The dataset GSE65682 from the Gene Expression Omnibus (GEO) database was utilized for bioinformatic analysis. Consensus weighted gene co-expression netwoek analysis (WGCNA) was performed to identify modules of sepsis. The module most significantly associated with mortality were further analyzed for the identification of master regulators of transcription factors and miRNA. A total number of 682 subjects with various causes of sepsis were included for consensus WGCNA analysis, which identified 27 modules. The network was well preserved among different causes of sepsis. Two modules designated as black and light yellow module were found to be associated with mortality outcome. Key regulators of the black and light yellow modules were the transcription factor CEBPB (normalized enrichment score = 5.53) and ETV6 (NES = 6), respectively. The top 5 miRNA regulated the most number of genes were hsa-miR-335-5p (n = 59), hsa-miR-26b-5p (n = 57), hsa-miR-16-5p (n = 44), hsa-miR-17-5p (n = 42), and hsa-miR-124-3p (n = 38). Clustering analysis in 2-dimension space derived from manifold learning identified two subclasses of sepsis, which showed significant association with survival in Cox proportional hazard model (p = 0.018). The present study showed that the black and light-yellow modules were significantly associated with mortality outcome. Master regulators of the module included transcription factor CEBPB and ETV6. miRNA-target interactions identified significantly enriched miRNA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
3秒前
璟晔完成签到,获得积分10
4秒前
6秒前
6秒前
醉熏的伊完成签到,获得积分10
7秒前
南歌子完成签到 ,获得积分10
8秒前
grass发布了新的文献求助10
8秒前
酥瓜完成签到 ,获得积分10
10秒前
asdfzxcv应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
asdfzxcv应助科研通管家采纳,获得10
12秒前
12秒前
asdfzxcv应助科研通管家采纳,获得10
12秒前
asdfzxcv应助科研通管家采纳,获得10
12秒前
asdfzxcv应助科研通管家采纳,获得10
13秒前
asdfzxcv应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
13秒前
Ava应助科研通管家采纳,获得10
13秒前
chen应助科研通管家采纳,获得10
13秒前
13秒前
asdfzxcv应助科研通管家采纳,获得10
13秒前
asdfzxcv应助科研通管家采纳,获得10
13秒前
13秒前
asdfzxcv应助科研通管家采纳,获得10
13秒前
13秒前
asdfzxcv应助科研通管家采纳,获得10
13秒前
13秒前
asdfzxcv应助科研通管家采纳,获得10
13秒前
Twonej应助科研通管家采纳,获得10
13秒前
13秒前
chen应助科研通管家采纳,获得10
13秒前
asdfzxcv应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838