Gene correlation network analysis to identify regulatory factors in sepsis.

医学 基因调控网络 生物信息学 相关性 基因表达
作者
Zhongheng Zhang,Lin Chen,Ping Xu,Lifeng Xing,Yucai Hong,Pengpeng Chen
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:18 (1): 381-381 被引量:5
标识
DOI:10.1186/s12967-020-02561-z
摘要

Sepsis is a leading cause of mortality and morbidity in the intensive care unit. Regulatory mechanisms underlying the disease progression and prognosis are largely unknown. The study aimed to identify master regulators of mortality-related modules, providing potential therapeutic target for further translational experiments. The dataset GSE65682 from the Gene Expression Omnibus (GEO) database was utilized for bioinformatic analysis. Consensus weighted gene co-expression netwoek analysis (WGCNA) was performed to identify modules of sepsis. The module most significantly associated with mortality were further analyzed for the identification of master regulators of transcription factors and miRNA. A total number of 682 subjects with various causes of sepsis were included for consensus WGCNA analysis, which identified 27 modules. The network was well preserved among different causes of sepsis. Two modules designated as black and light yellow module were found to be associated with mortality outcome. Key regulators of the black and light yellow modules were the transcription factor CEBPB (normalized enrichment score = 5.53) and ETV6 (NES = 6), respectively. The top 5 miRNA regulated the most number of genes were hsa-miR-335-5p (n = 59), hsa-miR-26b-5p (n = 57), hsa-miR-16-5p (n = 44), hsa-miR-17-5p (n = 42), and hsa-miR-124-3p (n = 38). Clustering analysis in 2-dimension space derived from manifold learning identified two subclasses of sepsis, which showed significant association with survival in Cox proportional hazard model (p = 0.018). The present study showed that the black and light-yellow modules were significantly associated with mortality outcome. Master regulators of the module included transcription factor CEBPB and ETV6. miRNA-target interactions identified significantly enriched miRNA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sci完成签到,获得积分10
1秒前
蟋蟀狂舞发布了新的文献求助10
4秒前
shelley完成签到,获得积分10
7秒前
冷艳小刺猬完成签到 ,获得积分10
8秒前
10秒前
搜集达人应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得30
12秒前
12秒前
爆米花应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
Hello应助科研通管家采纳,获得10
13秒前
14秒前
700w完成签到 ,获得积分10
15秒前
寂寞的诗云完成签到,获得积分10
15秒前
scfsl完成签到,获得积分10
15秒前
16秒前
幸福大白发布了新的文献求助10
16秒前
sijin1216完成签到,获得积分10
16秒前
小高发布了新的文献求助10
17秒前
歪比巴卜发布了新的文献求助10
18秒前
18秒前
19秒前
OKOK发布了新的文献求助10
19秒前
内向忆南发布了新的文献求助30
23秒前
24秒前
NexusExplorer应助花花采纳,获得10
25秒前
我是老大应助OKOK采纳,获得10
25秒前
deallyxyz应助goofs采纳,获得200
26秒前
27秒前
27秒前
木偶完成签到 ,获得积分10
28秒前
twob发布了新的文献求助10
28秒前
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993503
求助须知:如何正确求助?哪些是违规求助? 3534194
关于积分的说明 11264895
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806259
邀请新用户注册赠送积分活动 883055
科研通“疑难数据库(出版商)”最低求助积分说明 809702