化学
结扎
胶粘剂
表面改性
翻译后修饰
组合化学
高分子化学
化学工程
生物化学
有机化学
酶
分子生物学
生物
工程类
物理化学
图层(电子)
作者
Joshua A. Hammer,Jennifer L. West
标识
DOI:10.1021/acs.bioconjchem.0c00405
摘要
The twin, chemically orthogonal protein ligation domains, SpyCatcher and SnoopCatcher, were used to link two engineered proteins into poly(ethylene glycol) (PEG) hydrogels in order to control both endothelial cell adhesion and material-mediated pro-mitotic stimulation. SpyCatcher was appended with an N-terminal adhesion ligand RGDS to form RGDS-SC, and SnoopCatcher was appended with the vascular endothelial growth factor (VEGF)-mimetic peptide QK to form QK-SnpC. QK-SnpC formed a spontaneous covalent bond with SnoopTag peptide with 40% reaction efficiency, both in solution, in a PEG gel containing SnoopTag peptide, and in a PEG gel with both SnoopTag and SpyTag sites. QK-SnpC added to cell culture media enhanced endothelial cell proliferation compared to a negative control, and was statistically indistinguishable from the positive control of 130 pM VEGF165. Endothelial cells seeded onto PEG gels presenting both RGDS-SC and QK-SnpC showed ∼50% of cells actively proliferating (defined as Ki67+), compared to ∼31% of cells seeded on gels presenting RGDS-SC alone. These results show that complementary nondiffusing biochemical signals can be linked into PEG-DA hydrogels simultaneously using 'Catcher-based ligation strategies, thereby inducing more nuanced cell–material interactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI