Strategies for Enhancing Training and Privacy in Blockchain Enabled Federated Learning

计算机科学 联合学习 同态加密 差别隐私 激励 块链 超参数 分布式学习 信息隐私 遗忘 加密 分布式计算 人工智能 计算机安全 数据挖掘 语言学 哲学 教育学 经济 微观经济学 心理学
作者
Swaraj Kumar,Sandipan Dutta,Shaurya Chatturvedi,M. P. S. Bhatia
标识
DOI:10.1109/bigmm50055.2020.00058
摘要

Several recent advances in Federated Learning have made it possible for researchers to train their models on private data present on contributing devices without compromising their privacy. In this paradigm, each contributor's local updates are aggregated and averaged to update the global model. In this paper, we introduce a secure and decentralized training for distributed data. In order to develop an efficient decentralized system, blockchain technology is introduced via Ethereum, which enables us to create a value-driven incentive mechanism. This is done to encourage the contributors to positively affect the learning of the global model. We provide an enhanced security mechanism by implementing differential privacy and homomorphic encryption. The performance of the global model has been significantly boosted by implementing Elastic Weight Consolidation, which prevents Catastrophic forgetting, a scenario where the model learns only on new data and forgets its previous learnings. It proves essential in distributed training since the model is being trained on a spectrum of data, often present in clusters on each contributor's device. We introduce an innovative way of using hyperparameter optimization in federated learning with the help of Hyperopt and deposit based reward mechanism. Experiments verify the capability of the novel strategies incorporated in our system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
太多完成签到,获得积分10
2秒前
汉堡包应助裴小峰采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
3秒前
彭于彦祖应助科研通管家采纳,获得20
3秒前
田様应助科研通管家采纳,获得30
3秒前
英姑应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
ding应助lizeyu采纳,获得10
3秒前
4秒前
心灵美天应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得30
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得30
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
5秒前
mhl11应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
Harry发布了新的文献求助10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
mhl11应助科研通管家采纳,获得10
5秒前
5秒前
Li_KK完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
沙拉发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292356
求助须知:如何正确求助?哪些是违规求助? 2928650
关于积分的说明 8438119
捐赠科研通 2600747
什么是DOI,文献DOI怎么找? 1419262
科研通“疑难数据库(出版商)”最低求助积分说明 660268
邀请新用户注册赠送积分活动 642921