Strategies for Enhancing Training and Privacy in Blockchain Enabled Federated Learning

计算机科学 联合学习 同态加密 差别隐私 激励 块链 超参数 分布式学习 信息隐私 遗忘 加密 分布式计算 人工智能 计算机安全 数据挖掘 语言学 哲学 教育学 经济 微观经济学 心理学
作者
Swaraj Kumar,Sandipan Dutta,Shaurya Chatturvedi,M. P. S. Bhatia
标识
DOI:10.1109/bigmm50055.2020.00058
摘要

Several recent advances in Federated Learning have made it possible for researchers to train their models on private data present on contributing devices without compromising their privacy. In this paradigm, each contributor's local updates are aggregated and averaged to update the global model. In this paper, we introduce a secure and decentralized training for distributed data. In order to develop an efficient decentralized system, blockchain technology is introduced via Ethereum, which enables us to create a value-driven incentive mechanism. This is done to encourage the contributors to positively affect the learning of the global model. We provide an enhanced security mechanism by implementing differential privacy and homomorphic encryption. The performance of the global model has been significantly boosted by implementing Elastic Weight Consolidation, which prevents Catastrophic forgetting, a scenario where the model learns only on new data and forgets its previous learnings. It proves essential in distributed training since the model is being trained on a spectrum of data, often present in clusters on each contributor's device. We introduce an innovative way of using hyperparameter optimization in federated learning with the help of Hyperopt and deposit based reward mechanism. Experiments verify the capability of the novel strategies incorporated in our system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡的薄荷完成签到,获得积分10
刚刚
小小完成签到,获得积分20
1秒前
1秒前
玉米也会爆完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
杜熙发布了新的文献求助20
2秒前
3秒前
3秒前
527完成签到,获得积分10
3秒前
今后应助体贴花卷采纳,获得10
3秒前
啾啾出去玩完成签到,获得积分10
4秒前
114514发布了新的文献求助10
4秒前
Jasper应助伯言采纳,获得10
4秒前
孙燕应助遥不可及采纳,获得10
4秒前
萌新完成签到 ,获得积分10
5秒前
gbfgbdfbd发布了新的文献求助10
8秒前
Joey完成签到,获得积分10
8秒前
英吉利25发布了新的文献求助10
8秒前
小蘑菇应助caicai采纳,获得10
8秒前
wanwan应助顺顺采纳,获得10
9秒前
9秒前
宁霸完成签到,获得积分0
9秒前
Owen应助欢呼的丁真采纳,获得10
11秒前
momomo应助mpenny77采纳,获得10
11秒前
N_wh完成签到,获得积分10
11秒前
pluto应助huangsi采纳,获得10
13秒前
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
kecheng应助科研通管家采纳,获得10
14秒前
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得10
15秒前
今后应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
甜美无剑应助科研通管家采纳,获得50
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992040
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260941
捐赠科研通 3272444
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882682
科研通“疑难数据库(出版商)”最低求助积分说明 809425