Using American Community Survey Data to Improve Estimates from Smaller U.S. Surveys Through Bivariate Small Area Estimation Models

二元分析 小区域估算 统计 计量经济学 罗伊特 差异(会计) 人口 估计 数学 人口学 估计员 经济 会计 社会学 管理
作者
Carolina Franco,William R. Bell
出处
期刊:Journal of survey statistics and methodology [Oxford University Press]
卷期号:10 (1): 225-247 被引量:8
标识
DOI:10.1093/jssam/smaa040
摘要

Abstract We demonstrate the potential for borrowing strength from estimates from the American Community Survey (ACS), the largest US household survey, to improve estimates from smaller US household surveys. We do this using simple bivariate area-level models to exploit strong relationships between population characteristics estimated by the smaller surveys and ACS estimates of the same, or closely related, quantities. We illustrate this idea with two applications. The first shows impressive variance reductions for state estimates of health insurance coverage from the National Health Interview Survey when modeling these jointly with corresponding ACS estimates. The second application shows impressive variance reductions in ACS one-year county estimates of poverty of school-aged children from modeling these jointly with previous ACS five-year county estimates of school-age poverty. Simple theoretical calculations show how the amount of variance reduction depends on characteristics of the underlying data. In our applications, we examine three alternative bivariate models, starting with a simple bivariate Gaussian model. Since our applications involve modeling proportions, we also examine a bivariate binomial logit normal model, and an unmatched model that combines the Gaussian sampling model with the bivariate logit normal model for the population proportions. Given the strong relationships between the population characteristics estimated by the smaller surveys and the corresponding ACS estimates, and the low levels of sampling error in the ACS estimates, the models achieve large variance reductions even without using regression covariates drawn from auxiliary data sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
1秒前
wanci应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
思源应助蟹黄堡不打折采纳,获得10
1秒前
Lily应助科研通管家采纳,获得40
1秒前
敬老院N号应助科研通管家采纳,获得30
1秒前
zzzq应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
皮皮完成签到 ,获得积分10
1秒前
sallltyyy发布了新的文献求助10
1秒前
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
QPP完成签到,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
喜悦中道应助科研通管家采纳,获得10
1秒前
wzxxxx发布了新的文献求助10
2秒前
冬瓜炖排骨完成签到,获得积分10
2秒前
6666发布了新的文献求助10
2秒前
BB发布了新的文献求助10
3秒前
冷静雅青完成签到 ,获得积分10
4秒前
打打应助zhui采纳,获得10
4秒前
4秒前
科研通AI5应助xiu采纳,获得10
4秒前
5秒前
6秒前
William鉴哲完成签到,获得积分10
6秒前
神奇科研圆完成签到,获得积分10
6秒前
6秒前
biomds完成签到,获得积分10
6秒前
6秒前
7秒前
乐乐应助huifang采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794