Using American Community Survey Data to Improve Estimates from Smaller U.S. Surveys Through Bivariate Small Area Estimation Models

二元分析 小区域估算 统计 计量经济学 罗伊特 差异(会计) 人口 估计 数学 人口学 估计员 经济 会计 社会学 管理
作者
Carolina Franco,William R. Bell
出处
期刊:Journal of survey statistics and methodology [Oxford University Press]
卷期号:10 (1): 225-247 被引量:8
标识
DOI:10.1093/jssam/smaa040
摘要

Abstract We demonstrate the potential for borrowing strength from estimates from the American Community Survey (ACS), the largest US household survey, to improve estimates from smaller US household surveys. We do this using simple bivariate area-level models to exploit strong relationships between population characteristics estimated by the smaller surveys and ACS estimates of the same, or closely related, quantities. We illustrate this idea with two applications. The first shows impressive variance reductions for state estimates of health insurance coverage from the National Health Interview Survey when modeling these jointly with corresponding ACS estimates. The second application shows impressive variance reductions in ACS one-year county estimates of poverty of school-aged children from modeling these jointly with previous ACS five-year county estimates of school-age poverty. Simple theoretical calculations show how the amount of variance reduction depends on characteristics of the underlying data. In our applications, we examine three alternative bivariate models, starting with a simple bivariate Gaussian model. Since our applications involve modeling proportions, we also examine a bivariate binomial logit normal model, and an unmatched model that combines the Gaussian sampling model with the bivariate logit normal model for the population proportions. Given the strong relationships between the population characteristics estimated by the smaller surveys and the corresponding ACS estimates, and the low levels of sampling error in the ACS estimates, the models achieve large variance reductions even without using regression covariates drawn from auxiliary data sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘻嘻哈哈完成签到,获得积分10
刚刚
慕青应助懒羊羊大王采纳,获得10
1秒前
1秒前
LSC发布了新的文献求助30
1秒前
风一样的我完成签到 ,获得积分10
2秒前
2秒前
zxy完成签到,获得积分10
4秒前
BBrian发布了新的文献求助10
4秒前
雨的痕迹完成签到,获得积分10
5秒前
予安完成签到 ,获得积分10
5秒前
5秒前
qql发布了新的文献求助10
7秒前
Wang0102完成签到,获得积分10
7秒前
萨芬完成签到,获得积分10
7秒前
活泼傲之应助姜颖采纳,获得20
7秒前
7秒前
man发布了新的文献求助10
7秒前
8秒前
10秒前
10秒前
春雨发布了新的文献求助10
10秒前
一人独钓一江秋完成签到,获得积分10
12秒前
12秒前
小比熊完成签到,获得积分10
13秒前
Revovler完成签到,获得积分10
14秒前
英俊的铭应助麦克雷采纳,获得10
14秒前
17秒前
可爱的函函应助江楠采纳,获得10
19秒前
傻傻的哈密瓜完成签到,获得积分20
20秒前
11_23完成签到,获得积分10
22秒前
Akim应助康达采纳,获得10
24秒前
搜集达人应助麦克雷采纳,获得10
26秒前
27秒前
共享精神应助heheheli采纳,获得10
27秒前
Carly完成签到,获得积分20
27秒前
28秒前
adai完成签到,获得积分10
28秒前
29秒前
汉堡包应助四糸乃采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4632944
求助须知:如何正确求助?哪些是违规求助? 4029107
关于积分的说明 12466293
捐赠科研通 3715327
什么是DOI,文献DOI怎么找? 2050021
邀请新用户注册赠送积分活动 1081627
科研通“疑难数据库(出版商)”最低求助积分说明 963954