Untargeted metabolomics as a diagnostic tool in NAFLD: discrimination of steatosis, steatohepatitis and cirrhosis

脂肪性肝炎 肝硬化 脂肪变性 脂肪肝 胃肠病学 脂肪变 医学 内科学 代谢组学 疾病 计算生物学 生物信息学 生物
作者
Mario Masarone,Jacopo Troisi,Andrea Aglitti,Pietro Torre,Angelo Colucci,Marcello Dallio,Alessandro Federico,Clara Balsano,Marcello Persico
出处
期刊:Metabolomics [Springer Nature]
卷期号:17 (2) 被引量:68
标识
DOI:10.1007/s11306-020-01756-1
摘要

IntroductionNon-Alcoholic Fatty Liver Disease encompasses a spectrum of diseases ranging from simple steatosis to steatohepatitis (or NASH), up to cirrhosis and hepatocellular carcinoma (HCC). The challenge is to recognize the more severe and/or progressive pathology. A reliable non-invasive method does not exist. Untargeted metabolomics is a novel method to discover biomarkers and give insights on diseases pathophysiology.ObjectivesWe applied metabolomics to understand if simple steatosis, steatohepatitis and cirrhosis in NAFLD patients have peculiar metabolites profiles that can differentiate them among each-others and from controls.MethodsMetabolomics signatures were obtained from 307 subjects from two separated enrollments. The first collected samples from 69 controls and 144 patients (78 steatosis, 23 NASH, 15 NASH-cirrhosis, 8 HCV-cirrhosis, 20 cryptogenic cirrhosis). The second, used as validation-set, enrolled 44 controls and 50 patients (34 steatosis, 10 NASH and 6 NASH-cirrhosis).The “Partial-Least-Square Discriminant-Analysis”(PLS-DA) was used to reveal class separation in metabolomics profiles between patients and controls and among each class of patients, and to reveal the metabolites contributing to class differentiation.ResultsSeveral metabolites were selected as relevant, in particular:Glycocholic acid, Taurocholic acid, Phenylalanine, branched-chain amino-acids increased at the increase of the severity of the disease from steatosis to NASH, NASH-cirrhosis, while glutathione decreased (p < 0.001 for each). Moreover, an ensemble machine learning (EML) model was built (comprehending 10 different mathematical models) to verify diagnostic performance, showing an accuracy > 80% in NAFLD clinical stages prediction.ConclusionsMetabolomics profiles of NAFLD patients could be a useful tool to non-invasively diagnose NAFLD and discriminate among the various stages of the disease, giving insights into its pathophysiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助月初采纳,获得10
刚刚
小二郎应助dagongren采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
青鱼完成签到,获得积分10
2秒前
自觉楼房发布了新的文献求助10
2秒前
ZYY完成签到,获得积分10
3秒前
Sanma应助gzmejiji采纳,获得10
3秒前
团子完成签到 ,获得积分10
4秒前
4秒前
DrZhou发布了新的文献求助30
4秒前
大力蚂蚁完成签到 ,获得积分10
4秒前
4秒前
一期一会应助活力的沛菡采纳,获得10
5秒前
沉静的万天完成签到 ,获得积分10
5秒前
吕布发布了新的文献求助10
5秒前
5秒前
传奇3应助Andy采纳,获得30
6秒前
icanccwhite完成签到,获得积分10
6秒前
穆青完成签到,获得积分10
7秒前
9秒前
feiquan完成签到,获得积分10
9秒前
专注的问寒应助DAYDAY采纳,获得20
9秒前
吕布完成签到,获得积分10
9秒前
10秒前
研友_VZG7GZ应助455采纳,获得10
10秒前
orixero应助清脆凝云采纳,获得10
10秒前
11秒前
11秒前
11秒前
天真剑成完成签到,获得积分10
12秒前
12秒前
angle发布了新的文献求助10
12秒前
华仔应助echo采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
Ava应助lijing123采纳,获得10
13秒前
星辰大海应助laowosi采纳,获得10
13秒前
南烛完成签到 ,获得积分10
14秒前
AS发布了新的文献求助10
14秒前
14秒前
EXCELSIOR完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727744
求助须知:如何正确求助?哪些是违规求助? 5309981
关于积分的说明 15312237
捐赠科研通 4875187
什么是DOI,文献DOI怎么找? 2618600
邀请新用户注册赠送积分活动 1568248
关于科研通互助平台的介绍 1524927