A novel deep learning‐based integrated photovoltaic, energy storage system and electric heat pump system: Optimising energy usage and costs

光伏系统 汽车工程 储能 化石燃料 能量(信号处理) 能源会计 环境科学 能源消耗 高效能源利用 工艺工程 计算机科学 可靠性工程 工程类 电气工程 废物管理 功率(物理) 数学 统计 物理 量子力学
作者
Patrick Nzivugira Duhirwe,Jeong-Hwan Hwang,Jack Ngarambe,Suhgoo Kim,Kyungjae Kim,Kisun Song,Geun Young Yun
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:45 (6): 9306-9325 被引量:3
标识
DOI:10.1002/er.6462
摘要

The use of photovoltaic (PV) systems has drawn attention as a solution to reduce the dependence on fossil fuel for building energy needs. Moreover, incorporating energy storage systems (ESSs) in PV systems can optimise electric energy costs by increasing dependency on PV-generated energy during electric peak load times. However, current ESSs have limited capacities making it difficult to fully maximise PV-generated energy. We propose a novel integrated energy-efficient system for PV, ESS and electric heat pump (EHP) that maximises the usage of PV energy, optimises ESS usage and reduces EHP energy consumption costs. The components of the proposed integrated system are linked with a deep learning (DL)-based algorithm that forecasts PV energy generation and energy demand of the EHP. The proposed system schedules the charging/discharging time of ESSs depending on peak load times, the forecasted EHP electric demand, and PV-generated energy. The data used were collected for 10 months from a retail shop equipped with an EHP and ESS. We found that the developed DL-based forecasting models for PV and EHP are accurate and reliable (ie, R2 above 0.95). Also, the results show that the proposed integrated energy-efficient PV-ESS-EHP system saves 12% of the total annual electric costs, which corresponds to 1 285 291 Won. The proposed system ensures an efficient method to maximise PV-generated energy resulting in reduced dependency on fossil fuels for building energy needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
传奇3应助GG采纳,获得10
2秒前
wss发布了新的文献求助10
2秒前
CodeCraft应助一碗云吞面采纳,获得10
2秒前
danrushui777完成签到,获得积分10
3秒前
3秒前
mawanyu完成签到 ,获得积分10
4秒前
蟹浦肉完成签到,获得积分10
6秒前
7秒前
Tingzhuo完成签到,获得积分10
7秒前
spenley发布了新的文献求助10
9秒前
泊頔完成签到,获得积分10
11秒前
张可乐驳回了YTY应助
11秒前
12秒前
qi发布了新的文献求助10
12秒前
12秒前
陆小果完成签到,获得积分10
12秒前
wss完成签到,获得积分10
12秒前
14秒前
大地应助柳辞采纳,获得10
15秒前
8464368完成签到,获得积分10
15秒前
石贵远完成签到 ,获得积分10
15秒前
善学以致用应助哇咔咔采纳,获得10
15秒前
15秒前
16秒前
16秒前
16秒前
16秒前
17秒前
不会取名啊完成签到,获得积分10
18秒前
jx314完成签到,获得积分10
18秒前
19秒前
可爱的函函应助qi采纳,获得10
19秒前
小梁发布了新的文献求助10
19秒前
文献看不懂应助长度2到采纳,获得10
20秒前
万重山发布了新的文献求助10
20秒前
20秒前
我是老大应助最溜皮大爷采纳,获得10
21秒前
21秒前
lori发布了新的文献求助10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774942
求助须知:如何正确求助?哪些是违规求助? 3320717
关于积分的说明 10201500
捐赠科研通 3035571
什么是DOI,文献DOI怎么找? 1665545
邀请新用户注册赠送积分活动 796995
科研通“疑难数据库(出版商)”最低求助积分说明 757683