单核细胞增生李斯特菌
清脆的
化学
李斯特菌
血清型
荧光
微生物学
细菌
生物
基因
生物化学
遗传学
量子力学
物理
作者
Fan Li,Qinghua Ye,Moutong Chen,Xinran Xiang,Jumei Zhang,Rui Pang,Liang Xue,Juan Wang,Qihui Gu,Tao Lei,Xianhu Wei,Yu Ding,Qingping Wu
标识
DOI:10.1016/j.aca.2021.338248
摘要
The CRISPR/Cas12a system has displayed remarkable potential in the development of new methods for nucleic acid detection owing to the trans-cleavage activity of Cas12a. Despite the tremendous development in recent years, existing CRISPR/Cas12a-based methods have several limitations such as the time-consuming process, which takes up to 2 h, and the risk of aerosol contamination during DNA amplicon transfer. Herein, we propose a CRISPR/Cas12a-based fluorescence detection platform named “Cas12aFDet” for rapid nucleic acid detection that overcomes these limitations. By integrating PCR or recombinase-aided amplification (RAA) methods with Cas12a-mediated cleavage in a sealed reaction tube, Cas12aFDet-based detection of amplified products could be accomplished within 15 min, while avoiding amplicon contamination. The detection limits of PCR-based Cas12aFDet and RAA-based Cas12aFDet were determined to be 3.37 × 101 cfu/mL and 1.35 × 102 cfu/mL of Listeria monocytogenes serotype 4c in pure culture, respectively. Most importantly, RAA-based Cas12aFDet exhibited 0.64 aM sensitivity for DNA detection, and showed high specificity for detection of other serotypes of Listeria and non-Listeria strains. Furthermore, the feasibility of the RAA-based Cas12aFDet method was evaluated in spiked and natural samples, enabling the quantitative detection of 1.35 × 108–1.35 × 103 cfu/g fresh grass carp of the target L. monocytogenes serotype 4c, and the results obtained for 22 natural aquatic samples were highly consistent with those of the culture-based serotyping method. The established Cas12aFDet platform is expected to provide a new paradigm for the sensitive and specific detection of pathogens in food safety and clinical diagnosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI