已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unraveling the Anomalous Surface-Charge-Dependent Osmotic Power Using a Single Funnel-Shaped Nanochannel

电荷密度 化学物理 功率密度 表面电荷 渗透力 卤水 离子 材料科学 浓差极化 纳米流体学 电动现象 漏斗 俘获 纳米技术 分析化学(期刊) 化学 热力学 功率(物理) 物理 色谱法 正渗透 物理化学 生物化学 有机化学 生态学 量子力学 生物 反渗透
作者
Jyh‐Ping Hsu,Tzu-Chiao Su,Po‐Hsien Peng,Shih‐Chieh Hsu,Min-Jie Zheng,Li‐Hsien Yeh
出处
期刊:ACS Nano [American Chemical Society]
卷期号:13 (11): 13374-13381 被引量:101
标识
DOI:10.1021/acsnano.9b06774
摘要

Nanofluidic osmotic power, which converts a difference in salinity between brine and fresh water into electricity with nanoscale channels, has received more and more attention in recent years. It is long believed that to gain high-performance osmotic power, highly charged channel materials should be exploited so as to enhance the ion selectivity. In this paper, we report counterintuitive surface-charge-density-dependent osmotic power in a single funnel-shaped nanochannel (FSN), violating the previous viewpoint. For the highly charged nanochannel, the performance of osmotic power decreases with a further increase in its surface charge density. With increasing pH (surface charge density), the FSN enables a local maximum power density as high as ∼3.5 kW/m2 in a 500 mM/1 mM KCl gradient. This observation is strongly supported by our rigorous model where the equilibrium chemical reaction between functional carboxylate ion groups on the channel wall and protons is taken into account. The modeling reveals that for a highly charged nanochannel, a significant increase in the surface charge density amplifies the ion concentration polarization effect, thus weakening the effective salinity ratio across the channel and undermining the osmotic power generated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张尧摇摇摇完成签到 ,获得积分10
1秒前
坛子发布了新的文献求助10
1秒前
英俊的铭应助TANGLX采纳,获得10
2秒前
miumiu521发布了新的文献求助30
2秒前
orixero应助jia采纳,获得10
4秒前
Ania99完成签到 ,获得积分10
5秒前
糊涂的雁风完成签到,获得积分10
6秒前
小谢完成签到,获得积分10
6秒前
jia完成签到,获得积分10
10秒前
10秒前
TANGLX完成签到,获得积分10
11秒前
追逐123完成签到 ,获得积分10
14秒前
TANGLX发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
20秒前
25秒前
葡紫明完成签到 ,获得积分10
30秒前
Grayball应助科研通管家采纳,获得10
30秒前
Grayball应助科研通管家采纳,获得10
30秒前
Grayball应助科研通管家采纳,获得10
30秒前
Grayball应助科研通管家采纳,获得10
30秒前
yuaner发布了新的文献求助10
30秒前
猫猫小队长完成签到,获得积分10
30秒前
卟卟高升完成签到 ,获得积分10
31秒前
zorro3574完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
34秒前
36秒前
遇上就这样吧给czh的求助进行了留言
37秒前
慢歌完成签到 ,获得积分10
38秒前
41秒前
任性大米完成签到 ,获得积分10
44秒前
科研通AI5应助乐观的非笑采纳,获得10
45秒前
Ray羽曦~完成签到 ,获得积分10
48秒前
毓香谷的春天完成签到 ,获得积分0
48秒前
大超哥完成签到,获得积分10
49秒前
量子星尘发布了新的文献求助30
50秒前
Geist完成签到 ,获得积分10
50秒前
852应助坛子采纳,获得10
52秒前
简称王完成签到 ,获得积分10
53秒前
54秒前
满眼星辰完成签到 ,获得积分10
54秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666277
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762566
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607513
邀请新用户注册赠送积分活动 759242
科研通“疑难数据库(出版商)”最低求助积分说明 735185