ADMET Evaluation in Drug Discovery. 19. Reliable Prediction of Human Cytochrome P450 Inhibition Using Artificial Intelligence Approaches

人工智能 梯度升压 机器学习 计算机科学 决策树 随机森林 深度学习 人工神经网络 Boosting(机器学习) 自编码 药物发现 集成学习 化学信息学 卷积神经网络 药品 药物靶点 计算生物学 生物信息学 生物 药理学
作者
Zhenhua Wu,Tailong Lei,Chao Shen,Zhe Wang,Dongsheng Cao,Tingjun Hou
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (11): 4587-4601 被引量:118
标识
DOI:10.1021/acs.jcim.9b00801
摘要

Adverse effects induced by drug-drug interactions may result in early termination of drug development or even withdrawal of drugs from the market, and many drug-drug interactions are caused by the inhibition of cytochrome P450 (CYP450) enzymes. Therefore, the accurate prediction of the inhibition capability of a given compound against a specific CYP450 isoform is highly desirable. In this study, three ensemble learning methods, including random forest, gradient boosting decision tree, and eXtreme gradient boosting (XGBoost), and two deep learning methods, including deep neural networks and convolutional neural networks, were used to develop classification models to discriminate inhibitors and noninhibitors for five major CYP450 isoforms (1A2, 2C9, 2C19, 2D6, and 3A4). The results demonstrate that the ensemble learning models generally give better predictions than the deep learning models for the external test sets. Among all of the models, the XGBoost models achieve the best classification capability (average prediction accuracy of 90.4%) for the test sets, which even outperform the previously reported model developed by the multitask deep autoencoder neural network (88.5%). The Shapley additive explanation method was then used to interpret the models and analyze the misclassified molecules. The important molecular descriptors given by our models are consistent with the structural preferences for inhibitors of different CYP450 isoforms, which may provide valuable clues to detect potential drug-drug interactions in the early stage of drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
张存银完成签到 ,获得积分20
刚刚
刚刚
123456发布了新的文献求助30
刚刚
刚刚
脑洞疼应助笑笑的妙松采纳,获得10
1秒前
iwooto完成签到,获得积分10
1秒前
南风完成签到 ,获得积分10
1秒前
zongzi12138完成签到,获得积分0
1秒前
泡芙2完成签到 ,获得积分10
1秒前
11完成签到,获得积分10
1秒前
Sirene完成签到,获得积分20
1秒前
wweq发布了新的文献求助10
2秒前
2秒前
2秒前
周涛发布了新的文献求助10
3秒前
Dean应助HEHXU采纳,获得50
3秒前
高登登完成签到,获得积分20
3秒前
奈落完成签到,获得积分20
3秒前
lll发布了新的文献求助10
3秒前
完美世界应助liang采纳,获得10
3秒前
细腻天德完成签到,获得积分10
3秒前
cherish'发布了新的文献求助10
4秒前
充电宝应助飞奔小子采纳,获得10
4秒前
lyx完成签到 ,获得积分10
4秒前
Lynn666完成签到,获得积分10
4秒前
4秒前
4秒前
Owen应助赵念婉采纳,获得10
5秒前
5秒前
6秒前
KK完成签到,获得积分10
6秒前
烟花应助yan采纳,获得10
6秒前
6秒前
wjy完成签到,获得积分10
6秒前
Kevin完成签到,获得积分10
7秒前
共渡完成签到,获得积分10
7秒前
吴家豪完成签到,获得积分10
8秒前
乐乐应助拿抓抓拿采纳,获得10
8秒前
翟庆春完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997