ADMET Evaluation in Drug Discovery. 19. Reliable Prediction of Human Cytochrome P450 Inhibition Using Artificial Intelligence Approaches

人工智能 梯度升压 机器学习 计算机科学 决策树 随机森林 深度学习 人工神经网络 Boosting(机器学习) 自编码 药物发现 集成学习 化学信息学 卷积神经网络 药品 药物靶点 计算生物学 生物信息学 生物 药理学
作者
Zhenhua Wu,Tailong Lei,Chao Shen,Zhe Wang,Dongsheng Cao,Tingjun Hou
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (11): 4587-4601 被引量:109
标识
DOI:10.1021/acs.jcim.9b00801
摘要

Adverse effects induced by drug-drug interactions may result in early termination of drug development or even withdrawal of drugs from the market, and many drug-drug interactions are caused by the inhibition of cytochrome P450 (CYP450) enzymes. Therefore, the accurate prediction of the inhibition capability of a given compound against a specific CYP450 isoform is highly desirable. In this study, three ensemble learning methods, including random forest, gradient boosting decision tree, and eXtreme gradient boosting (XGBoost), and two deep learning methods, including deep neural networks and convolutional neural networks, were used to develop classification models to discriminate inhibitors and noninhibitors for five major CYP450 isoforms (1A2, 2C9, 2C19, 2D6, and 3A4). The results demonstrate that the ensemble learning models generally give better predictions than the deep learning models for the external test sets. Among all of the models, the XGBoost models achieve the best classification capability (average prediction accuracy of 90.4%) for the test sets, which even outperform the previously reported model developed by the multitask deep autoencoder neural network (88.5%). The Shapley additive explanation method was then used to interpret the models and analyze the misclassified molecules. The important molecular descriptors given by our models are consistent with the structural preferences for inhibitors of different CYP450 isoforms, which may provide valuable clues to detect potential drug-drug interactions in the early stage of drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
legendh完成签到,获得积分10
1秒前
洁净的半鬼完成签到,获得积分20
1秒前
GAS完成签到,获得积分10
1秒前
这种发布了新的文献求助10
2秒前
Akim应助夜雨听风眠z采纳,获得10
2秒前
3秒前
3秒前
aaazx666发布了新的文献求助10
4秒前
火星上楷瑞完成签到,获得积分10
4秒前
Dark_Moon完成签到,获得积分10
4秒前
maox1aoxin应助铁手无情采纳,获得30
4秒前
David完成签到,获得积分10
4秒前
大营村完成签到,获得积分10
4秒前
GAS发布了新的文献求助10
5秒前
研友_VZG7GZ应助朱权圣采纳,获得10
6秒前
共享精神应助含糊的文涛采纳,获得10
7秒前
海带带发布了新的文献求助10
7秒前
小马甲应助mk_smile采纳,获得10
8秒前
姬鲁宁完成签到 ,获得积分10
8秒前
8秒前
8秒前
curry完成签到,获得积分10
9秒前
10秒前
Wuhuhu完成签到,获得积分10
10秒前
10秒前
10秒前
wanci应助可爱的菠萝采纳,获得10
10秒前
12秒前
李健应助Darming采纳,获得10
12秒前
rocketian完成签到,获得积分10
12秒前
星星完成签到 ,获得积分10
13秒前
朽木发布了新的文献求助20
13秒前
寻宝人完成签到,获得积分10
13秒前
Jacob发布了新的文献求助10
14秒前
xucc发布了新的文献求助10
14秒前
DODO完成签到,获得积分10
14秒前
huohuo完成签到,获得积分10
14秒前
14秒前
living笑白完成签到,获得积分10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747915
求助须知:如何正确求助?哪些是违规求助? 3290739
关于积分的说明 10070743
捐赠科研通 3006635
什么是DOI,文献DOI怎么找? 1651226
邀请新用户注册赠送积分活动 786286
科研通“疑难数据库(出版商)”最低求助积分说明 751596