ADMET Evaluation in Drug Discovery. 19. Reliable Prediction of Human Cytochrome P450 Inhibition Using Artificial Intelligence Approaches

人工智能 计算机科学 药物发现 细胞色素P450 药品 计算生物学 化学 生物 药理学 生物化学
作者
Zhenhua Wu,Tailong Lei,Chao Shen,Zhe Wang,Dongsheng Cao,Tingjun Hou
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (11): 4587-4601 被引量:104
标识
DOI:10.1021/acs.jcim.9b00801
摘要

Adverse effects induced by drug-drug interactions may result in early termination of drug development or even withdrawal of drugs from the market, and many drug-drug interactions are caused by the inhibition of cytochrome P450 (CYP450) enzymes. Therefore, the accurate prediction of the inhibition capability of a given compound against a specific CYP450 isoform is highly desirable. In this study, three ensemble learning methods, including random forest, gradient boosting decision tree, and eXtreme gradient boosting (XGBoost), and two deep learning methods, including deep neural networks and convolutional neural networks, were used to develop classification models to discriminate inhibitors and noninhibitors for five major CYP450 isoforms (1A2, 2C9, 2C19, 2D6, and 3A4). The results demonstrate that the ensemble learning models generally give better predictions than the deep learning models for the external test sets. Among all of the models, the XGBoost models achieve the best classification capability (average prediction accuracy of 90.4%) for the test sets, which even outperform the previously reported model developed by the multitask deep autoencoder neural network (88.5%). The Shapley additive explanation method was then used to interpret the models and analyze the misclassified molecules. The important molecular descriptors given by our models are consistent with the structural preferences for inhibitors of different CYP450 isoforms, which may provide valuable clues to detect potential drug-drug interactions in the early stage of drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助monster0101采纳,获得10
1秒前
2秒前
2秒前
acuis发布了新的文献求助10
2秒前
搁浅发布了新的文献求助10
3秒前
水晶茶杯发布了新的文献求助10
4秒前
深情未来发布了新的文献求助10
5秒前
haha发布了新的文献求助10
6秒前
奇奇发布了新的文献求助10
7秒前
8秒前
abcd完成签到,获得积分10
8秒前
8秒前
上官若男应助学术蟑螂采纳,获得30
9秒前
9秒前
10秒前
吡啶应助虚心采纳,获得20
10秒前
葡萄蛋挞完成签到,获得积分10
11秒前
jasmine发布了新的文献求助10
12秒前
光亮向雁完成签到 ,获得积分10
12秒前
13秒前
那奇泡芙发布了新的文献求助10
13秒前
Sammy完成签到,获得积分10
13秒前
Jasper应助风趣青槐采纳,获得10
14秒前
14秒前
juanjuan应助壮观若雁采纳,获得10
14秒前
wddfz完成签到,获得积分10
16秒前
儒雅的秋玲完成签到,获得积分10
16秒前
坦白Ccc发布了新的文献求助10
17秒前
17秒前
联网中请稍等完成签到,获得积分10
18秒前
18秒前
Lucas应助那奇泡芙采纳,获得10
19秒前
19秒前
20秒前
令狐晓博完成签到,获得积分0
20秒前
学术蟑螂发布了新的文献求助30
20秒前
无限的跳跳糖完成签到,获得积分10
21秒前
21秒前
22秒前
24秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157189
求助须知:如何正确求助?哪些是违规求助? 2808483
关于积分的说明 7877835
捐赠科研通 2467029
什么是DOI,文献DOI怎么找? 1313118
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919