Superwetting Oil/Water Separation Membrane Constructed from In Situ Assembled Metal–Phenolic Networks and Metal–Organic Frameworks

超亲水性 材料科学 生物污染 润湿 金属有机骨架 化学工程 纳米技术 吸附 有机化学 化学 复合材料 生物化学 工程类
作者
Ruoxi Wang,Xueting Zhao,Ning Jia,Li-Juan Cheng,Lifen Liu,Congjie Gao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:12 (8): 10000-10008 被引量:140
标识
DOI:10.1021/acsami.9b22080
摘要

Superwetting membranes with opposite wettability to oil and water have drawn intense attention in recent years for oil/water separation. Superhydrophilic and underwater superoleophobic membranes have shown unique advantages in the efficient treatment of oily wastewater containing oil-in-water emulsions. Facile interfacial engineering and microstructural design of the hierarchical architectures and the hydrophilic chemistry is of significance but still challenging. In this study, a hydrophilic hierarchical hybrid layer derived from metal-phenolic network (MPN)/metal-organic framework (MOF) synergy is constructed on the membrane surface via a proposed coordination-directed alternating assembly strategy. The assembly of MPN multilayers provides a hydrophilic chemical basis, and the assembly of MOF nanocrystals provides a hierarchical structural basis. Notably, the coordination interfacial interaction enables the formation of well-defined hydrophilic hierarchical architectures. The obtained membrane is thus endowed with robust superhydrophilicity, underwater superoleophobicity, and anti-oil-adhesion capability, which make it capable of highly efficient oil-water separation with high water permeance (above 6300 L/m2 h), high oil rejection (above 99.4%), and recyclable antifouling property. The high performance of the developed superwetting membrane makes it a competitive candidate for oil/water separation. Additionally, the demonstrated MPN/MOF assembly strategy may offer new prospects for the facile and versatile design of other superwetting materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小鱼发布了新的文献求助10
刚刚
孙成成完成签到 ,获得积分10
1秒前
ee完成签到,获得积分10
1秒前
刘德华完成签到,获得积分10
1秒前
Disci完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
3秒前
帅气鹭洋发布了新的文献求助10
3秒前
夏昼发布了新的文献求助10
3秒前
cometx完成签到 ,获得积分10
4秒前
路之遥兮发布了新的文献求助10
4秒前
yy发布了新的文献求助10
4秒前
4秒前
852应助100采纳,获得10
4秒前
爱静静应助cruise采纳,获得10
5秒前
Singularity应助cruise采纳,获得10
5秒前
VDC应助cruise采纳,获得30
5秒前
5秒前
5秒前
了晨完成签到 ,获得积分10
6秒前
小xy完成签到,获得积分10
6秒前
7秒前
小昼完成签到 ,获得积分10
7秒前
尊敬的完成签到,获得积分10
8秒前
8秒前
整齐海秋完成签到,获得积分10
8秒前
8秒前
善学以致用应助白榆采纳,获得10
8秒前
JamesPei应助易达采纳,获得10
9秒前
9秒前
9秒前
圣晟胜发布了新的文献求助10
9秒前
xx发布了新的文献求助10
10秒前
忧郁觅柔完成签到 ,获得积分10
10秒前
追寻夜香发布了新的文献求助10
10秒前
昊康好完成签到,获得积分10
10秒前
11秒前
yy完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678