RL SolVeR Pro: Reinforcement Learning for Solving Vehicle Routing Problem

解算器 强化学习 车辆路径问题 计算机科学 数学优化 启发式 启发式 维数之咒 可扩展性 水准点(测量) 马尔可夫决策过程 布线(电子设计自动化) 人工智能 马尔可夫过程 数学 计算机网络 统计 大地测量学 数据库 地理
作者
Arun Kumar Kalakanti,Shivani Verma,Topon Paul,Takufumi Yoshida
出处
期刊:International Conference on Artificial Intelligence 被引量:21
标识
DOI:10.1109/aidas47888.2019.8970890
摘要

Vehicle Routing Problem (VRP) is a well-known NP-hard combinatorial optimization problem at the heart of the transportation and logistics research. VRP can be exactly solved only for small instances of the problem with conventional methods. Traditionally this problem has been solved using heuristic methods for large instances even though there is no guarantee of optimality. Efficient solution adopted to VRP may lead to significant savings per year in large transportation and logistics systems. Much of the recent works using Reinforcement Learning are computationally intensive and face the three curse of dimensionality: explosions in state and action spaces and high stochasticity i.e., large number of possible next states for a given state action pair. Also, recent works on VRP don't consider the realistic simulation settings of customer environments, stochastic elements and scalability aspects as they use only standard Solomon benchmark instances of at most 100 customers. In this work, Reinforcement Learning Solver for Vehicle Routing Problem (RL SolVeR Pro) is proposed wherein the optimal route learning problem is cast as a Markov Decision Process (MDP). The curse of dimensionality of RL is also overcome by using two-phase solver with geometric clustering. Also, realistic simulation for VRP was used to validate the effectiveness and applicability of the proposed RL SolVeR Pro under various conditions and constraints. Our simulation results suggest that our proposed method is able to obtain better or same level of results, compared to the two best-known heuristics: Clarke-Wright Savings and Sweep Heuristic. The proposed RL Solver can be applied to other variants of the VRP and has the potential to be applied more generally to other combinatorial optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jinx123456完成签到,获得积分10
1秒前
单纯冰棍完成签到,获得积分20
1秒前
金海完成签到,获得积分10
1秒前
liqian发布了新的文献求助10
1秒前
1秒前
XIEMIN完成签到,获得积分10
2秒前
贺贺完成签到 ,获得积分20
3秒前
3秒前
悦耳荟完成签到,获得积分10
3秒前
4秒前
4秒前
joejo1124完成签到 ,获得积分10
5秒前
sl发布了新的文献求助10
6秒前
hhh发布了新的文献求助10
6秒前
爱吃藕粉凉羹的奶油完成签到,获得积分20
7秒前
动听煎饼完成签到 ,获得积分10
8秒前
明理冬瓜完成签到,获得积分10
8秒前
bkagyin应助cldg采纳,获得10
8秒前
小马甲应助不站在雾里采纳,获得10
8秒前
pp完成签到 ,获得积分0
9秒前
zhangjianzeng完成签到 ,获得积分10
9秒前
史小菜应助云轩采纳,获得20
10秒前
伏伏雅逸发布了新的文献求助10
10秒前
李健应助荒野风采纳,获得10
11秒前
Popeye应助单纯血茗采纳,获得10
11秒前
淡然冬灵发布了新的文献求助10
11秒前
Popeye应助单纯血茗采纳,获得10
11秒前
荔枝的油饼iKun完成签到,获得积分10
12秒前
Bosen完成签到,获得积分10
12秒前
Astraeus完成签到 ,获得积分10
13秒前
fengyuenanche完成签到,获得积分10
14秒前
五虎完成签到,获得积分10
15秒前
Akim应助Rollei采纳,获得10
16秒前
hoshi1018完成签到,获得积分10
17秒前
友好曲奇完成签到,获得积分10
17秒前
dongdong完成签到 ,获得积分10
18秒前
CR7完成签到,获得积分0
19秒前
左丘忻完成签到,获得积分10
19秒前
凤迎雪飘完成签到,获得积分10
19秒前
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048