RL SolVeR Pro: Reinforcement Learning for Solving Vehicle Routing Problem

解算器 强化学习 车辆路径问题 计算机科学 数学优化 启发式 启发式 维数之咒 可扩展性 水准点(测量) 马尔可夫决策过程 布线(电子设计自动化) 人工智能 马尔可夫过程 数学 计算机网络 统计 大地测量学 数据库 地理
作者
Arun Kumar Kalakanti,Shivani Verma,Topon Paul,Takufumi Yoshida
出处
期刊:International Conference on Artificial Intelligence 被引量:21
标识
DOI:10.1109/aidas47888.2019.8970890
摘要

Vehicle Routing Problem (VRP) is a well-known NP-hard combinatorial optimization problem at the heart of the transportation and logistics research. VRP can be exactly solved only for small instances of the problem with conventional methods. Traditionally this problem has been solved using heuristic methods for large instances even though there is no guarantee of optimality. Efficient solution adopted to VRP may lead to significant savings per year in large transportation and logistics systems. Much of the recent works using Reinforcement Learning are computationally intensive and face the three curse of dimensionality: explosions in state and action spaces and high stochasticity i.e., large number of possible next states for a given state action pair. Also, recent works on VRP don't consider the realistic simulation settings of customer environments, stochastic elements and scalability aspects as they use only standard Solomon benchmark instances of at most 100 customers. In this work, Reinforcement Learning Solver for Vehicle Routing Problem (RL SolVeR Pro) is proposed wherein the optimal route learning problem is cast as a Markov Decision Process (MDP). The curse of dimensionality of RL is also overcome by using two-phase solver with geometric clustering. Also, realistic simulation for VRP was used to validate the effectiveness and applicability of the proposed RL SolVeR Pro under various conditions and constraints. Our simulation results suggest that our proposed method is able to obtain better or same level of results, compared to the two best-known heuristics: Clarke-Wright Savings and Sweep Heuristic. The proposed RL Solver can be applied to other variants of the VRP and has the potential to be applied more generally to other combinatorial optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
3秒前
Owen应助晒太阳的加菲猫采纳,获得10
4秒前
anna发布了新的文献求助10
6秒前
6秒前
wu基督教发布了新的文献求助10
7秒前
8秒前
余南发布了新的文献求助10
9秒前
晒太阳的加菲猫完成签到,获得积分10
9秒前
笑点低诗桃完成签到,获得积分20
10秒前
泡泡脑瓜完成签到,获得积分10
10秒前
12秒前
liche发布了新的文献求助10
12秒前
13秒前
修管子发布了新的文献求助10
13秒前
14秒前
共享精神应助gx采纳,获得10
14秒前
高手完成签到,获得积分20
15秒前
无所谓的啦完成签到,获得积分10
15秒前
ylq关闭了ylq文献求助
16秒前
wu基督教完成签到,获得积分20
16秒前
17秒前
迷人的芹菜完成签到,获得积分10
17秒前
18秒前
Miracle发布了新的文献求助10
18秒前
高手发布了新的文献求助10
19秒前
19秒前
我啊完成签到 ,获得积分10
22秒前
slp发布了新的文献求助30
23秒前
23秒前
gx发布了新的文献求助10
25秒前
英姑应助笑点低诗桃采纳,获得10
27秒前
youwenjing11发布了新的文献求助10
27秒前
王铂然发布了新的文献求助10
30秒前
大模型应助GGBOND采纳,获得10
31秒前
脑洞疼应助gx采纳,获得10
31秒前
Eunice完成签到,获得积分10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105