亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RL SolVeR Pro: Reinforcement Learning for Solving Vehicle Routing Problem

解算器 强化学习 车辆路径问题 计算机科学 数学优化 启发式 启发式 维数之咒 可扩展性 水准点(测量) 马尔可夫决策过程 布线(电子设计自动化) 人工智能 马尔可夫过程 数学 计算机网络 统计 大地测量学 数据库 地理
作者
Arun Kumar Kalakanti,Shivani Verma,Topon Paul,Takufumi Yoshida
出处
期刊:International Conference on Artificial Intelligence 被引量:21
标识
DOI:10.1109/aidas47888.2019.8970890
摘要

Vehicle Routing Problem (VRP) is a well-known NP-hard combinatorial optimization problem at the heart of the transportation and logistics research. VRP can be exactly solved only for small instances of the problem with conventional methods. Traditionally this problem has been solved using heuristic methods for large instances even though there is no guarantee of optimality. Efficient solution adopted to VRP may lead to significant savings per year in large transportation and logistics systems. Much of the recent works using Reinforcement Learning are computationally intensive and face the three curse of dimensionality: explosions in state and action spaces and high stochasticity i.e., large number of possible next states for a given state action pair. Also, recent works on VRP don't consider the realistic simulation settings of customer environments, stochastic elements and scalability aspects as they use only standard Solomon benchmark instances of at most 100 customers. In this work, Reinforcement Learning Solver for Vehicle Routing Problem (RL SolVeR Pro) is proposed wherein the optimal route learning problem is cast as a Markov Decision Process (MDP). The curse of dimensionality of RL is also overcome by using two-phase solver with geometric clustering. Also, realistic simulation for VRP was used to validate the effectiveness and applicability of the proposed RL SolVeR Pro under various conditions and constraints. Our simulation results suggest that our proposed method is able to obtain better or same level of results, compared to the two best-known heuristics: Clarke-Wright Savings and Sweep Heuristic. The proposed RL Solver can be applied to other variants of the VRP and has the potential to be applied more generally to other combinatorial optimization problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
11秒前
11秒前
魔幻的小之完成签到,获得积分10
21秒前
zhangxiaoqing发布了新的文献求助10
32秒前
57秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
KsL2177完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
兰兰不懒发布了新的文献求助30
1分钟前
赣南橙发布了新的文献求助10
1分钟前
猫抓板发布了新的文献求助10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
紫焰完成签到 ,获得积分10
1分钟前
2分钟前
卷心菜完成签到 ,获得积分10
2分钟前
ling发布了新的文献求助10
2分钟前
2分钟前
爱咋咋地完成签到,获得积分10
2分钟前
曦颜发布了新的文献求助10
2分钟前
爱咋咋地发布了新的文献求助10
2分钟前
猫抓板发布了新的文献求助10
3分钟前
脑洞疼应助兰兰不懒采纳,获得10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
赣南橙完成签到,获得积分10
3分钟前
4分钟前
4分钟前
兰兰不懒发布了新的文献求助10
4分钟前
赘婿应助兰兰不懒采纳,获得10
4分钟前
Magali发布了新的文献求助80
4分钟前
玉灵子发布了新的文献求助10
5分钟前
上官若男应助玉灵子采纳,获得10
5分钟前
无花果应助zizideng采纳,获得10
5分钟前
NexusExplorer应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
zizideng发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671275
求助须知:如何正确求助?哪些是违规求助? 4913655
关于积分的说明 15134379
捐赠科研通 4830066
什么是DOI,文献DOI怎么找? 2586738
邀请新用户注册赠送积分活动 1540332
关于科研通互助平台的介绍 1498523