已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

RL SolVeR Pro: Reinforcement Learning for Solving Vehicle Routing Problem

解算器 强化学习 车辆路径问题 计算机科学 数学优化 启发式 启发式 维数之咒 可扩展性 水准点(测量) 马尔可夫决策过程 布线(电子设计自动化) 人工智能 马尔可夫过程 数学 计算机网络 统计 大地测量学 数据库 地理
作者
Arun Kumar Kalakanti,Shivani Verma,Topon Paul,Takufumi Yoshida
出处
期刊:International Conference on Artificial Intelligence 被引量:21
标识
DOI:10.1109/aidas47888.2019.8970890
摘要

Vehicle Routing Problem (VRP) is a well-known NP-hard combinatorial optimization problem at the heart of the transportation and logistics research. VRP can be exactly solved only for small instances of the problem with conventional methods. Traditionally this problem has been solved using heuristic methods for large instances even though there is no guarantee of optimality. Efficient solution adopted to VRP may lead to significant savings per year in large transportation and logistics systems. Much of the recent works using Reinforcement Learning are computationally intensive and face the three curse of dimensionality: explosions in state and action spaces and high stochasticity i.e., large number of possible next states for a given state action pair. Also, recent works on VRP don't consider the realistic simulation settings of customer environments, stochastic elements and scalability aspects as they use only standard Solomon benchmark instances of at most 100 customers. In this work, Reinforcement Learning Solver for Vehicle Routing Problem (RL SolVeR Pro) is proposed wherein the optimal route learning problem is cast as a Markov Decision Process (MDP). The curse of dimensionality of RL is also overcome by using two-phase solver with geometric clustering. Also, realistic simulation for VRP was used to validate the effectiveness and applicability of the proposed RL SolVeR Pro under various conditions and constraints. Our simulation results suggest that our proposed method is able to obtain better or same level of results, compared to the two best-known heuristics: Clarke-Wright Savings and Sweep Heuristic. The proposed RL Solver can be applied to other variants of the VRP and has the potential to be applied more generally to other combinatorial optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
IfItheonlyone完成签到 ,获得积分10
1秒前
SHD完成签到 ,获得积分10
2秒前
yu完成签到 ,获得积分10
3秒前
3秒前
Mr兔仙森完成签到,获得积分10
7秒前
悠悠我心完成签到,获得积分10
9秒前
英姑应助霜鸣采纳,获得10
10秒前
12秒前
凶狠的寄风完成签到 ,获得积分10
13秒前
14秒前
水若琳发布了新的文献求助10
17秒前
小黑完成签到,获得积分10
20秒前
21秒前
壮观的谷冬完成签到 ,获得积分0
21秒前
霸气的思柔完成签到,获得积分10
22秒前
aliu完成签到,获得积分10
23秒前
月儿完成签到 ,获得积分10
24秒前
牟翎完成签到,获得积分10
26秒前
liboshi完成签到,获得积分10
26秒前
霜鸣发布了新的文献求助10
28秒前
aliu发布了新的文献求助10
28秒前
andrele发布了新的文献求助10
31秒前
王子娇完成签到 ,获得积分10
32秒前
33秒前
传奇3应助霜鸣采纳,获得10
34秒前
hellokitty完成签到,获得积分10
34秒前
38秒前
852应助科研通管家采纳,获得10
38秒前
bkagyin应助科研通管家采纳,获得10
38秒前
JamesPei应助科研通管家采纳,获得10
38秒前
Rondab应助科研通管家采纳,获得10
38秒前
Rondab应助科研通管家采纳,获得10
38秒前
38秒前
wanci应助科研通管家采纳,获得30
38秒前
NexusExplorer应助科研通管家采纳,获得10
38秒前
bxxxxx应助科研通管家采纳,获得30
38秒前
搜集达人应助科研通管家采纳,获得30
38秒前
38秒前
生动丑应助科研通管家采纳,获得10
38秒前
zp6666tql完成签到 ,获得积分10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989972
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256042
捐赠科研通 3270884
什么是DOI,文献DOI怎么找? 1805093
邀请新用户注册赠送积分活动 882256
科研通“疑难数据库(出版商)”最低求助积分说明 809216