RL SolVeR Pro: Reinforcement Learning for Solving Vehicle Routing Problem

解算器 强化学习 车辆路径问题 计算机科学 数学优化 启发式 启发式 维数之咒 可扩展性 水准点(测量) 马尔可夫决策过程 布线(电子设计自动化) 人工智能 马尔可夫过程 数学 统计 大地测量学 数据库 地理 计算机网络
作者
Arun Kumar Kalakanti,Shivani Verma,Topon Paul,Takufumi Yoshida
出处
期刊:International Conference on Artificial Intelligence 被引量:21
标识
DOI:10.1109/aidas47888.2019.8970890
摘要

Vehicle Routing Problem (VRP) is a well-known NP-hard combinatorial optimization problem at the heart of the transportation and logistics research. VRP can be exactly solved only for small instances of the problem with conventional methods. Traditionally this problem has been solved using heuristic methods for large instances even though there is no guarantee of optimality. Efficient solution adopted to VRP may lead to significant savings per year in large transportation and logistics systems. Much of the recent works using Reinforcement Learning are computationally intensive and face the three curse of dimensionality: explosions in state and action spaces and high stochasticity i.e., large number of possible next states for a given state action pair. Also, recent works on VRP don't consider the realistic simulation settings of customer environments, stochastic elements and scalability aspects as they use only standard Solomon benchmark instances of at most 100 customers. In this work, Reinforcement Learning Solver for Vehicle Routing Problem (RL SolVeR Pro) is proposed wherein the optimal route learning problem is cast as a Markov Decision Process (MDP). The curse of dimensionality of RL is also overcome by using two-phase solver with geometric clustering. Also, realistic simulation for VRP was used to validate the effectiveness and applicability of the proposed RL SolVeR Pro under various conditions and constraints. Our simulation results suggest that our proposed method is able to obtain better or same level of results, compared to the two best-known heuristics: Clarke-Wright Savings and Sweep Heuristic. The proposed RL Solver can be applied to other variants of the VRP and has the potential to be applied more generally to other combinatorial optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助肉松小贝采纳,获得10
刚刚
粉色完成签到,获得积分10
刚刚
Ll发布了新的文献求助10
刚刚
刚刚
愉快彩虹发布了新的文献求助10
1秒前
CTL完成签到,获得积分10
1秒前
1秒前
共享精神应助加减乘除采纳,获得10
1秒前
1秒前
恬恬完成签到,获得积分10
1秒前
2秒前
22发布了新的文献求助10
2秒前
aacc956发布了新的文献求助10
2秒前
2秒前
谨慎涵柏完成签到,获得积分10
3秒前
快乐的如风完成签到,获得积分10
4秒前
5秒前
吃猫的鱼完成签到,获得积分10
5秒前
脑洞疼应助润润轩轩采纳,获得10
6秒前
刘文静完成签到,获得积分10
7秒前
Southluuu发布了新的文献求助10
7秒前
chenjyuu发布了新的文献求助10
7秒前
7秒前
粗暴的仙人掌完成签到,获得积分20
7秒前
8秒前
8秒前
8秒前
logic发布了新的文献求助10
8秒前
习习应助生动的雨竹采纳,获得10
8秒前
bo完成签到 ,获得积分10
8秒前
迟大猫应助啵乐乐采纳,获得10
9秒前
安雯完成签到 ,获得积分10
9秒前
HuLL完成签到,获得积分10
9秒前
Yolo完成签到 ,获得积分10
9秒前
难过的慕青完成签到,获得积分10
9秒前
11秒前
11秒前
11秒前
12秒前
无花果应助sunzhiyu233采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759