RL SolVeR Pro: Reinforcement Learning for Solving Vehicle Routing Problem

解算器 强化学习 车辆路径问题 计算机科学 数学优化 启发式 启发式 维数之咒 可扩展性 水准点(测量) 马尔可夫决策过程 布线(电子设计自动化) 人工智能 马尔可夫过程 数学 统计 大地测量学 数据库 地理 计算机网络
作者
Arun Kumar Kalakanti,Shivani Verma,Topon Paul,Takufumi Yoshida
出处
期刊:International Conference on Artificial Intelligence 被引量:21
标识
DOI:10.1109/aidas47888.2019.8970890
摘要

Vehicle Routing Problem (VRP) is a well-known NP-hard combinatorial optimization problem at the heart of the transportation and logistics research. VRP can be exactly solved only for small instances of the problem with conventional methods. Traditionally this problem has been solved using heuristic methods for large instances even though there is no guarantee of optimality. Efficient solution adopted to VRP may lead to significant savings per year in large transportation and logistics systems. Much of the recent works using Reinforcement Learning are computationally intensive and face the three curse of dimensionality: explosions in state and action spaces and high stochasticity i.e., large number of possible next states for a given state action pair. Also, recent works on VRP don't consider the realistic simulation settings of customer environments, stochastic elements and scalability aspects as they use only standard Solomon benchmark instances of at most 100 customers. In this work, Reinforcement Learning Solver for Vehicle Routing Problem (RL SolVeR Pro) is proposed wherein the optimal route learning problem is cast as a Markov Decision Process (MDP). The curse of dimensionality of RL is also overcome by using two-phase solver with geometric clustering. Also, realistic simulation for VRP was used to validate the effectiveness and applicability of the proposed RL SolVeR Pro under various conditions and constraints. Our simulation results suggest that our proposed method is able to obtain better or same level of results, compared to the two best-known heuristics: Clarke-Wright Savings and Sweep Heuristic. The proposed RL Solver can be applied to other variants of the VRP and has the potential to be applied more generally to other combinatorial optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wx发布了新的文献求助10
1秒前
XuChen发布了新的文献求助10
2秒前
于茜完成签到,获得积分10
3秒前
091完成签到 ,获得积分10
5秒前
兴奋惜天发布了新的文献求助10
6秒前
7秒前
8秒前
小蚂蚁完成签到 ,获得积分10
9秒前
可罗雀完成签到,获得积分10
9秒前
XuChen完成签到,获得积分10
10秒前
wx完成签到,获得积分20
11秒前
GU完成签到,获得积分10
12秒前
Alchemist完成签到,获得积分10
13秒前
cxk6678发布了新的文献求助10
14秒前
忧心的书双完成签到 ,获得积分10
17秒前
18秒前
英勇的宛海完成签到,获得积分10
22秒前
快乐书琴完成签到,获得积分10
24秒前
Antiona发布了新的文献求助10
25秒前
For-t-完成签到 ,获得积分10
27秒前
wulala关注了科研通微信公众号
28秒前
阿木木完成签到,获得积分10
28秒前
朴素友安完成签到 ,获得积分10
31秒前
小二郎应助小台农采纳,获得30
32秒前
虚幻的采枫完成签到 ,获得积分10
33秒前
J_C_Van完成签到,获得积分10
36秒前
快乐书琴发布了新的文献求助10
36秒前
兴奋惜天完成签到,获得积分10
36秒前
37秒前
38秒前
42秒前
43秒前
47秒前
便宜小师傅完成签到 ,获得积分10
48秒前
小台农发布了新的文献求助30
49秒前
常泽洋122完成签到,获得积分10
51秒前
xianglingliwei完成签到 ,获得积分0
52秒前
Dayton完成签到,获得积分10
54秒前
双黄应助Lily采纳,获得30
59秒前
汉堡包应助dai采纳,获得10
1分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266254
求助须知:如何正确求助?哪些是违规求助? 2906091
关于积分的说明 8336594
捐赠科研通 2576464
什么是DOI,文献DOI怎么找? 1400556
科研通“疑难数据库(出版商)”最低求助积分说明 654786
邀请新用户注册赠送积分活动 633661