亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RL SolVeR Pro: Reinforcement Learning for Solving Vehicle Routing Problem

解算器 强化学习 车辆路径问题 计算机科学 数学优化 启发式 启发式 维数之咒 可扩展性 水准点(测量) 马尔可夫决策过程 布线(电子设计自动化) 人工智能 马尔可夫过程 数学 计算机网络 统计 大地测量学 数据库 地理
作者
Arun Kumar Kalakanti,Shivani Verma,Topon Paul,Takufumi Yoshida
出处
期刊:International Conference on Artificial Intelligence 被引量:21
标识
DOI:10.1109/aidas47888.2019.8970890
摘要

Vehicle Routing Problem (VRP) is a well-known NP-hard combinatorial optimization problem at the heart of the transportation and logistics research. VRP can be exactly solved only for small instances of the problem with conventional methods. Traditionally this problem has been solved using heuristic methods for large instances even though there is no guarantee of optimality. Efficient solution adopted to VRP may lead to significant savings per year in large transportation and logistics systems. Much of the recent works using Reinforcement Learning are computationally intensive and face the three curse of dimensionality: explosions in state and action spaces and high stochasticity i.e., large number of possible next states for a given state action pair. Also, recent works on VRP don't consider the realistic simulation settings of customer environments, stochastic elements and scalability aspects as they use only standard Solomon benchmark instances of at most 100 customers. In this work, Reinforcement Learning Solver for Vehicle Routing Problem (RL SolVeR Pro) is proposed wherein the optimal route learning problem is cast as a Markov Decision Process (MDP). The curse of dimensionality of RL is also overcome by using two-phase solver with geometric clustering. Also, realistic simulation for VRP was used to validate the effectiveness and applicability of the proposed RL SolVeR Pro under various conditions and constraints. Our simulation results suggest that our proposed method is able to obtain better or same level of results, compared to the two best-known heuristics: Clarke-Wright Savings and Sweep Heuristic. The proposed RL Solver can be applied to other variants of the VRP and has the potential to be applied more generally to other combinatorial optimization problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
1秒前
科研通AI6应助inRe采纳,获得10
4秒前
RRRZZ完成签到 ,获得积分10
7秒前
wanci应助佛光辉采纳,获得10
7秒前
8秒前
科研小白完成签到 ,获得积分10
8秒前
Luna_aaa应助鲸医生采纳,获得10
9秒前
千纸鹤完成签到 ,获得积分10
9秒前
吴大王完成签到,获得积分10
11秒前
体贴花卷发布了新的文献求助10
11秒前
晨曦呢完成签到 ,获得积分10
13秒前
14秒前
小蘑菇应助吴大王采纳,获得10
14秒前
万事胜意完成签到 ,获得积分10
15秒前
烟花应助体贴花卷采纳,获得10
18秒前
孙福禄发布了新的文献求助10
18秒前
19秒前
19秒前
21秒前
sunryaes完成签到 ,获得积分10
22秒前
daguan完成签到,获得积分10
23秒前
23秒前
24秒前
25秒前
吴大王发布了新的文献求助10
27秒前
田様应助落伍少年采纳,获得10
28秒前
隐形曼青应助佛光辉采纳,获得10
30秒前
Robin发布了新的文献求助10
31秒前
qq完成签到 ,获得积分10
34秒前
栗栗栗完成签到,获得积分10
35秒前
tong发布了新的文献求助10
38秒前
桐桐应助沙琪玛采纳,获得10
40秒前
李健应助佛光辉采纳,获得10
45秒前
Robin完成签到,获得积分10
45秒前
多情的如冰完成签到 ,获得积分10
45秒前
46秒前
于梦寒完成签到,获得积分10
47秒前
科研通AI2S应助tong采纳,获得10
49秒前
小新完成签到 ,获得积分10
50秒前
ceeray23发布了新的文献求助20
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627771
求助须知:如何正确求助?哪些是违规求助? 4714752
关于积分的说明 14963143
捐赠科研通 4785543
什么是DOI,文献DOI怎么找? 2555174
邀请新用户注册赠送积分活动 1516500
关于科研通互助平台的介绍 1476926