RL SolVeR Pro: Reinforcement Learning for Solving Vehicle Routing Problem

解算器 强化学习 车辆路径问题 计算机科学 数学优化 启发式 启发式 维数之咒 可扩展性 水准点(测量) 马尔可夫决策过程 布线(电子设计自动化) 人工智能 马尔可夫过程 数学 计算机网络 统计 大地测量学 数据库 地理
作者
Arun Kumar Kalakanti,Shivani Verma,Topon Paul,Takufumi Yoshida
出处
期刊:International Conference on Artificial Intelligence 被引量:21
标识
DOI:10.1109/aidas47888.2019.8970890
摘要

Vehicle Routing Problem (VRP) is a well-known NP-hard combinatorial optimization problem at the heart of the transportation and logistics research. VRP can be exactly solved only for small instances of the problem with conventional methods. Traditionally this problem has been solved using heuristic methods for large instances even though there is no guarantee of optimality. Efficient solution adopted to VRP may lead to significant savings per year in large transportation and logistics systems. Much of the recent works using Reinforcement Learning are computationally intensive and face the three curse of dimensionality: explosions in state and action spaces and high stochasticity i.e., large number of possible next states for a given state action pair. Also, recent works on VRP don't consider the realistic simulation settings of customer environments, stochastic elements and scalability aspects as they use only standard Solomon benchmark instances of at most 100 customers. In this work, Reinforcement Learning Solver for Vehicle Routing Problem (RL SolVeR Pro) is proposed wherein the optimal route learning problem is cast as a Markov Decision Process (MDP). The curse of dimensionality of RL is also overcome by using two-phase solver with geometric clustering. Also, realistic simulation for VRP was used to validate the effectiveness and applicability of the proposed RL SolVeR Pro under various conditions and constraints. Our simulation results suggest that our proposed method is able to obtain better or same level of results, compared to the two best-known heuristics: Clarke-Wright Savings and Sweep Heuristic. The proposed RL Solver can be applied to other variants of the VRP and has the potential to be applied more generally to other combinatorial optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气的宽完成签到 ,获得积分10
1秒前
华仔应助靓丽的悒采纳,获得10
2秒前
Lucky完成签到 ,获得积分10
5秒前
Joy完成签到,获得积分10
8秒前
huminjie完成签到 ,获得积分10
10秒前
feng完成签到,获得积分10
11秒前
13秒前
研友_ZA2B68完成签到,获得积分0
14秒前
wei发布了新的文献求助10
16秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
18秒前
要自律的锅完成签到 ,获得积分10
19秒前
勤恳的书文完成签到 ,获得积分10
19秒前
靓丽的悒完成签到 ,获得积分10
20秒前
123123完成签到 ,获得积分10
21秒前
xiaoyi完成签到 ,获得积分10
22秒前
RenY完成签到,获得积分10
23秒前
灯座发布了新的文献求助10
25秒前
李璟文完成签到 ,获得积分10
25秒前
25秒前
Zhjie126完成签到,获得积分10
26秒前
Chris完成签到 ,获得积分0
28秒前
fancy发布了新的文献求助10
30秒前
31秒前
sa0022完成签到,获得积分10
32秒前
chenkj完成签到,获得积分10
33秒前
ikun完成签到,获得积分10
33秒前
小满完成签到 ,获得积分10
34秒前
左右完成签到 ,获得积分10
37秒前
37秒前
金秋完成签到,获得积分0
37秒前
枯藤老柳树完成签到,获得积分10
40秒前
yy完成签到 ,获得积分10
41秒前
周辰完成签到,获得积分10
41秒前
whqpeter完成签到,获得积分10
42秒前
小二郎应助fancy采纳,获得10
46秒前
Dorren完成签到,获得积分10
47秒前
星宿陨完成签到 ,获得积分10
48秒前
luckyhan完成签到 ,获得积分10
49秒前
Keyuuu30完成签到,获得积分0
50秒前
qin123完成签到 ,获得积分10
52秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212353
求助须知:如何正确求助?哪些是违规求助? 4388551
关于积分的说明 13664063
捐赠科研通 4249022
什么是DOI,文献DOI怎么找? 2331365
邀请新用户注册赠送积分活动 1329024
关于科研通互助平台的介绍 1282440