Two-stage physics-based Wiener process models for online RUL prediction in field vibration data

过程(计算) 维纳过程 计算机科学 工程类 统计的 人工智能 数据挖掘 数学 统计 操作系统
作者
Bingxin Yan,Xiaobing Ma,Guifa Huang,Yu Zhao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:152: 107378-107378 被引量:71
标识
DOI:10.1016/j.ymssp.2020.107378
摘要

• We propose the two-stage physics-based Wiener process models. • An online stage division principle is developed to detect the change point. • An online remaining useful life prediction framework is constructed. • A dataset of wheel tread vibration demonstrates the superiority of the proposed method. Due to most failure mechanisms, such as fatigue crack growth and fatigue spall, the degradation process of rotating machinery commonly exhibits two-stage features in engineering practice. Other minor factors are also the key issues affecting the health evolution process, including the component structure, assembly accuracy, and working environment. Ignoring such a mechanism may lead to imprecise in degradation modeling, life prognostic, and ultimately lead to safety risk. Besides, achieving high accuracy of prognostic emphasizes the influence of random effect in the degradation process. The contribution of this study lies in addressing this issue by proposing two-stage physics-based Wiener process models integrating: (a) fatigue crack mechanism and crack growth law, and (b) other minor factors. A general prognostic framework is formulated by jointly employing the online change point detection, parameter estimation, and remaining useful life (RUL) prediction, which has good statistic inference and applicability in two general nonlinear systems, i.e., power-law and exponential-law. A joint implement of offline two-step parameter estimation method and the online Bayesian update method is executed, making full advantage of historical and in-service data, based on which the RUL prediction transcends into an imperative PHM module. A practical case study on the vibration dataset of wheel treads demonstrates the practically implement ability of the proposed method in achieving high accuracy of RUL prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
图苏完成签到,获得积分10
刚刚
乐乐应助紫陌采纳,获得10
刚刚
哈哈怪发布了新的文献求助10
1秒前
3秒前
5秒前
5秒前
7秒前
chrysophoron发布了新的文献求助10
11秒前
清逸完成签到 ,获得积分10
12秒前
12秒前
kangkang完成签到,获得积分10
14秒前
Raino完成签到 ,获得积分10
14秒前
15秒前
15秒前
chenb发布了新的文献求助10
16秒前
orixero应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
曾经念真应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
大胆绮应助科研通管家采纳,获得10
17秒前
自由一一完成签到,获得积分20
18秒前
曾经念真应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
18秒前
曾经念真应助科研通管家采纳,获得10
18秒前
善学以致用应助干将莫邪采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
18秒前
Profeto应助科研通管家采纳,获得10
18秒前
18秒前
Akim应助科研通管家采纳,获得10
18秒前
19秒前
雨天发布了新的文献求助10
19秒前
20秒前
23秒前
香蕉觅云应助啊啊啊啊采纳,获得10
24秒前
25秒前
一丁雨完成签到,获得积分10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994080
求助须知:如何正确求助?哪些是违规求助? 3534628
关于积分的说明 11266093
捐赠科研通 3274554
什么是DOI,文献DOI怎么找? 1806388
邀请新用户注册赠送积分活动 883254
科研通“疑难数据库(出版商)”最低求助积分说明 809724