Automatic defect detection of metro tunnel surfaces using a vision-based inspection system

图像拼接 计算机科学 人工智能 软件 特征(语言学) 计算机视觉 卷积神经网络 图像处理 机器视觉 图像(数学) 语言学 哲学 程序设计语言
作者
Dawei Li,Qian Xie,Xiaoxi Gong,Zhenghao Yu,Jinxuan Xu,Yangxing Sun,Jun Wang
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:47: 101206-101206 被引量:144
标识
DOI:10.1016/j.aei.2020.101206
摘要

Due to the impact of the surrounding environment changes, train-induced vibration, and human interference, damage to metro tunnel surfaces frequently occurs. Therefore, accidents caused by the tunnel surface damage may happen at any time, since the lack of adequate and efficient maintenance. To our knowledge, effective maintenance heavily depends on the all-round and accurate defect inspection, which is a challenging task, due to the harsh environment (e.g., insufficient illumination, the limited time window for inspection, etc.). To address these problems, we design an automatic Metro Tunnel Surface Inspection System (MTSIS) for the efficient and accurate defect detection, which covers the design of hardware and software parts. For the hardware component, we devise a data collection system to capture tunnel surface images with high resolution at high speed. For the software part, we present a tunnel surface image pre-processing approach and a defect detection method to recognize defects with high accuracy. The image pre-processing approach includes image contrast enhancement and image stitching in a coarse-to-fine manner, which are employed to improve the quality of raw images and to avoid repeating detection for overlapped regions of the captured tunnel images respectively. To achieve automatic tunnel surface defect detection with high precision, we propose a multi-layer feature fusion network, based on the Faster Region-based Convolutional Neural Network (Faster RCNN). Our image pre-processing and the defect detection methods also promising performance in terms of recall and precision, which is demonstrated through a series of practical experimental results. Moreover, our MTSIS has been successfully applied on several metro lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研小牛马完成签到,获得积分10
刚刚
guohuameike完成签到,获得积分10
1秒前
zanedou完成签到,获得积分10
1秒前
红绿蓝完成签到 ,获得积分10
1秒前
1秒前
希望天下0贩的0应助ggdio采纳,获得10
1秒前
NANFENGSUSU发布了新的文献求助10
2秒前
2秒前
天天快乐应助justonce采纳,获得10
2秒前
2秒前
2秒前
你去打输出关注了科研通微信公众号
2秒前
3秒前
阳光明媚完成签到,获得积分10
3秒前
Akim应助胡小壳采纳,获得10
3秒前
4秒前
青灿笑完成签到,获得积分10
5秒前
小超人发布了新的文献求助30
5秒前
5秒前
落落完成签到 ,获得积分10
5秒前
5秒前
永远55度完成签到,获得积分10
6秒前
6秒前
草履虫发布了新的文献求助10
7秒前
xj305完成签到,获得积分10
7秒前
8秒前
8秒前
王一g完成签到,获得积分10
8秒前
lalala发布了新的文献求助10
9秒前
9秒前
mkmimii发布了新的文献求助10
9秒前
9秒前
大鲨鱼完成签到 ,获得积分10
10秒前
11秒前
11秒前
12秒前
梦魂完成签到,获得积分10
12秒前
胖大海完成签到,获得积分10
13秒前
洋洋爱吃枣完成签到 ,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044