Automatic defect detection of metro tunnel surfaces using a vision-based inspection system

图像拼接 计算机科学 人工智能 软件 特征(语言学) 计算机视觉 卷积神经网络 图像处理 机器视觉 图像(数学) 语言学 哲学 程序设计语言
作者
Dawei Li,Qian Xie,Xiaoxi Gong,Zhenghao Yu,Jinxuan Xu,Yangxing Sun,Jun Wang
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:47: 101206-101206 被引量:144
标识
DOI:10.1016/j.aei.2020.101206
摘要

Due to the impact of the surrounding environment changes, train-induced vibration, and human interference, damage to metro tunnel surfaces frequently occurs. Therefore, accidents caused by the tunnel surface damage may happen at any time, since the lack of adequate and efficient maintenance. To our knowledge, effective maintenance heavily depends on the all-round and accurate defect inspection, which is a challenging task, due to the harsh environment (e.g., insufficient illumination, the limited time window for inspection, etc.). To address these problems, we design an automatic Metro Tunnel Surface Inspection System (MTSIS) for the efficient and accurate defect detection, which covers the design of hardware and software parts. For the hardware component, we devise a data collection system to capture tunnel surface images with high resolution at high speed. For the software part, we present a tunnel surface image pre-processing approach and a defect detection method to recognize defects with high accuracy. The image pre-processing approach includes image contrast enhancement and image stitching in a coarse-to-fine manner, which are employed to improve the quality of raw images and to avoid repeating detection for overlapped regions of the captured tunnel images respectively. To achieve automatic tunnel surface defect detection with high precision, we propose a multi-layer feature fusion network, based on the Faster Region-based Convolutional Neural Network (Faster RCNN). Our image pre-processing and the defect detection methods also promising performance in terms of recall and precision, which is demonstrated through a series of practical experimental results. Moreover, our MTSIS has been successfully applied on several metro lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干沛萍完成签到,获得积分10
刚刚
516完成签到,获得积分10
1秒前
大地发布了新的文献求助10
2秒前
丘比特应助芷兰丁香采纳,获得10
3秒前
科研通AI2S应助文艺不凡采纳,获得10
3秒前
我是科研垃圾完成签到,获得积分10
5秒前
大柿子完成签到,获得积分10
6秒前
orixero应助nickel采纳,获得10
6秒前
乐乐应助木偶采纳,获得10
7秒前
无花果应助奇奇奇很奇妙采纳,获得10
9秒前
9秒前
汉堡包应助Xide采纳,获得10
10秒前
13秒前
核动力路灯完成签到,获得积分10
14秒前
15秒前
xuhang发布了新的文献求助10
16秒前
细心雨兰发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
nickel发布了新的文献求助10
18秒前
18秒前
万万完成签到,获得积分20
19秒前
木偶发布了新的文献求助10
20秒前
脑洞疼应助嘚嘚嘚采纳,获得10
21秒前
22秒前
zorro3574发布了新的文献求助10
22秒前
嘻嘻尼88完成签到 ,获得积分10
22秒前
23秒前
wenxian发布了新的文献求助30
23秒前
孙兆杰发布了新的文献求助10
24秒前
共享精神应助壮观的晓露采纳,获得10
24秒前
ssk完成签到,获得积分10
27秒前
28秒前
老实的夜白完成签到 ,获得积分10
29秒前
29秒前
30秒前
莉芳发布了新的文献求助10
33秒前
MM完成签到 ,获得积分10
33秒前
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141417
求助须知:如何正确求助?哪些是违规求助? 2792460
关于积分的说明 7802814
捐赠科研通 2448645
什么是DOI,文献DOI怎么找? 1302695
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237