清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Novel Hybrid Ice Protection System Combining Thermoelectric System and Synthetic Jet Actuator

结冰 中国 航空学 空气动力学 航空航天 工程类 研究中心 航空航天工程 气象学 机械工程 政治学 地理 法学
作者
Shengke Yang,Xian Yi,Qiling Guo,Chunhua Xiao,Zhenbing LUO,Yan Zhou
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:59 (4): 1496-1500 被引量:8
标识
DOI:10.2514/1.j059906
摘要

No AccessTechnical NotesNovel Hybrid Ice Protection System Combining Thermoelectric System and Synthetic Jet ActuatorShengke Yang, Xian Yi, Qiling Guo, Chunhua Xiao, Zhenbing Luo and Yan ZhouShengke YangChina Aerodynamics Research and Development Center, 621000 Mianyang, People’s Republic of China*Engineer, Key Laboratory of Icing and Anti/De-Icing; .Search for more papers by this author, Xian YiChina Aerodynamics Research and Development Center, 621000 Mianyang, People’s Republic of China†Professor, Key Laboratory of Icing and Anti/De-Icing; .Search for more papers by this author, Qiling GuoChina Aerodynamics Research and Development Center, 621000 Mianyang, People’s Republic of China‡Assistant Engineer, Key Laboratory of Icing and Anti/De-Icing; .Search for more papers by this author, Chunhua XiaoChina Aerodynamics Research and Development Center, 621000 Mianyang, People’s Republic of China§Professor, Key Laboratory of Icing and Anti/De-Icing; .Search for more papers by this author, Zhenbing LuoNational University of Defense Technology, 410073 Changsha, People’s Republic of China¶Professor, College of Aerospace Science and Engineering; .Search for more papers by this author and Yan ZhouNational University of Defense Technology, 410073 Changsha, People’s Republic of China**Lecturer, College of Aerospace Science and Engineering; .Search for more papers by this authorPublished Online:8 Dec 2020https://doi.org/10.2514/1.J059906SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Gent R. W., Dart N. P. and Cansdale J. T., “Aircraft Icing,” Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, Vol. 358, No. 1776, 2000, pp. 2873–2911. https://doi.org/10.1098/rsta.2000.0689 CrossrefGoogle Scholar[2] Valarezo W. O., Lynch F. T. and McGhee R. J., “Aerodynamic Performance Effects due to Small Leading-Edge Ice(Roughness) on Wings and Tails,” Journal of Aircraft, Vol. 30, No. 6, 1993, pp. 807–812. https://doi.org/10.2514/3.46420 LinkGoogle Scholar[3] Gao T., Luo Z., Zhou Y., Liu Z., Peng W., Cheng P. and Den X., “Novel Deicing Method Based on Plasma Synthetic Jet Actuator,” AIAA Journal, Vol. 58, No. 9, 2020, pp. 4181–4188. https://doi.org/10.2514/1.J059352 LinkGoogle Scholar[4] Thomas S. K., Cassoni R. P. and MacArthur C. D., “Aircraft Anti-Icing and De-Icing Techniques and Modeling,” Journal of Aircraft, Vol. 33, No. 5, 1996, pp. 841–854. https://doi.org/10.2514/3.47027 LinkGoogle Scholar[5] Chang S. N., Yang B., Leng M. Y., Zhao Y. Y. and Liu M. Y., “Study on Bleed Air Anti-Icing System of Aircraft,” Journal of Aerospace Power, Vol. 32, No. 5, 2017, pp. 1025–1034. https://doi.org/10.13224/j.cnki.jasp.2017.05.001 Google Scholar[6] Venna S. V., Lin Y. and Botura G., “Piezoelectric Transducer Actuated Leading Edge De-Icing with Simultaneous Shear and Impulse Forces,” Journal of Aircraft, Vol. 44, No. 2, 2007, pp. 509–515. https://doi.org/10.2514/1.23996 LinkGoogle Scholar[7] Pourbagian M. and Habashi W. G., “Aero-Thermal Optimization of In-Flight Electro-Thermal Ice Protection Systems in Transient De-Icing Mode,” International Journal of Heat and Fluid Flow, Vol. 54, Aug. 2015, pp. 167–182. https://doi.org/10.1016/j.ijheatfluidflow.2015.05.012 CrossrefGoogle Scholar[8] Meng X., Hu H., Li C., Abbasi A. A., Cai J. and Hu H., “Mechanism Study of Coupled Aerodynamic and Thermal Effects Using Plasma Actuation for Anti-Icing,” Physics of Fluids, Vol. 31, No. 3, 2019, Paper 037103. https://doi.org/10.1063/1.5086884 CrossrefGoogle Scholar[9] Wei B., Wu Y., Liang H., Chen J., Zhao G., Tian M. and Xu H., “Performance and Mechanism Analysis of Nanosecond Pulsed Surface Dielectric Barrier Discharge Based Plasma Deicer,” Physics of Fluids, Vol. 31, No. 9, 2019, Paper 091701. https://doi.org/10.1063/1.5115272 Google Scholar[10] Budinger M., Pommier-Budinger V., Bennani L., Rouset P., Bonaccurso E. and Dezitter F., “Electromechanical Resonant Ice Protection Systems: Analysis of Fracture Propagation Mechanisms,” AIAA Journal, Vol. 56, No. 11, 2018, pp. 4412–4422. https://doi.org/10.2514/1.J056663 LinkGoogle Scholar[11] Zhou W., Liu Y., Hu H., Hu H. and Meng X., “Utilization of Thermal Effect Induced by Plasma Generation for Aircraft Icing Mitigation,” AIAA Journal, Vol. 56, No. 3, 2018, pp. 1097–1104. https://doi.org/10.2514/1.J056358 LinkGoogle Scholar[12] Liu Y., Kolbakir C., Hu H. and Hu H., “A Comparison Study on the Thermal Effects in DBD Plasma Actuation and Electrical Heating for Aircraft Icing Mitigation,” International Journal of Heat and Mass Transfer, Vol. 124, Sept. 2018, pp. 319–330.https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.076 CrossrefGoogle Scholar[13] Calay R. K., Holdo A. E., Mayman P. and Lun I., “Experimental Simulation of Runback Ice,” Journal of Aircraft, Vol. 34, No. 2, 1997, pp. 206–212. https://doi.org/10.2514/2.2173 LinkGoogle Scholar[14] Huang X., Tepylo N., Pommier-Budinger V., Budinger M., Bonaccurso E., Villedieu P. and Bennani L., “A Survey of Icephobic Coatings and Their Potential Use in a Hybrid Coating/Active Ice Protection System for Aerospace Applications,” Progress in Aerospace Sciences, Vol. 105, No. 1, 2019, pp. 74–97. https://doi.org/10.1016/j.paerosci.2019.01.002 Google Scholar[15] Al-Khalil K., Ferguson T. and Phillips D., “A Hybrid Anti-Icing Ice Protection System,” 35th Aerospace Sciences Meeting and Exhibit, AIAA Paper 1997-0302, 1997. https://doi.org/10.2514/6.1997-302 LinkGoogle Scholar[16] Al-Khalil K., “Thermo-Mechanical Expulsive Deicing System-TMEDS,” 45th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2007-0692, 2007. https://doi.org/10.2514/6.2007-692 LinkGoogle Scholar[17] Fortin G., Adomou M. and Perron J., “Experimental Study of Hybrid Anti-Icing Systems Combining Thermoelectric and Hydrophobic Coatings,” SAE TP 2011-38-0003, Warrendale, PA, 2011. https://doi.org/10.4271/2011-38-0003 CrossrefGoogle Scholar[18] Strobl T., Adam R., Tuschter M., Tuschter D., Thompson D. and Hornung M., “Feasibility Study of a Hybrid Ice Protection System Based on Passive Removal of Residual Ice,” 53rd AIAA Aerospace Sciences Meeting, AIAA Paper 2015-0032, Jan. 2015. https://doi.org/10.2514/6.2015-0032 LinkGoogle Scholar[19] Strobl T., Storm S., Thompson D. and Hornung M., “Feasibility Study of a Hybrid Ice Protection System,” Journal of Aircraft, Vol. 52, No. 6, 2015, pp. 2064–2076. https://doi.org/10.2514/1.C033161 LinkGoogle Scholar[20] Wang J. and Wu J., “Aerodynamic Performance Improvement of a Pitching Airfoil via a Synthetic Jet,” European Journal of Mechanics—B/Fluids, Vol. 83, No. 4, 2020, pp. 73–85. https://doi.org/10.1016/j.euromechflu.2020.04.009 Google Scholar[21] Amitay M., Smith D. R., Kibens V., Parekh D. E. and Glezer A., “Aerodynamic Flow Control over an Unconventional Airfoil Using Synthetic Jet Actuators,” AIAA Journal Vol. 39, No. 3, 2001, pp. 361–370. https://doi.org/10.2514/2.1323 LinkGoogle Scholar[22] Wang L., Feng L., Wang J. and Li T., “Characteristics and Mechanism of Mixing Enhancement for Noncircular Synthetic Jets at Low Reynolds Number,” Experimental Thermal and Fluid Science, Vol. 98, No. 11, 2018, pp. 731–743. https://doi.org/10.1016/j.expthermflusci.2018.06.021 Google Scholar[23] Luo Z., Deng X., Xia Z., Wang L. and Gong W., “Flow Field and Heat Transfer Characteristics of Impingement Based on a Vectoring Dual Synthetic Jet Actuator,” International Journal of Heat and Mass Transfer, Vol. 102, No. 11, 2016, pp. 18–25. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.003 Google Scholar[24] Nikisha N., Golubev V. and Nakhla H., “On Icing Control Using Thermally Activated Synthetic Jets,” AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2013-0093, 2013. https://doi.org/10.2514/6.2013-93 Google Scholar[25] FAA, “Part 25 Airworthiness Standards: Transport Category Airplanes,” Federal Aviation Regulations, 2003. Google Scholar[26] FAA, “Pilot Guide: Flight in Icing Conditions,” Federal Aviation Regulations, 2007. Google Scholar[27] Shinkafi A. and Lawson C., “Enhanced Method of Conceptual Sizing of Aircraft Electro-Thermal De-Icing System,” International Journal of Aerospace and Mechanical Engineering, Vol. 8, No. 6, 2014, pp. 1065–1072. https://doi.org/10.5281/zenodo.2661308 Google Scholar[28] Goodfellow S., Yarusevych S. and Sullivan P., “Momentum Coefficient as a Parameter for Aerodynamic Flow Control with Synthetic Jets,” AIAA Journal, Vol. 51, No. 3, 2013, pp. 623–631. https://doi.org/10.2514/1.J051935 LinkGoogle Scholar[29] Amitay M., Smith D., Kibens V., Parekh D. E. and Glezer A., “Aerodynamic Flow Control over an Unconventional Airfoil Using Synthetic Jet Actuators,” AIAA Journal, Vol. 39, No. 3, 2001, pp. 361–370.https://doi.org/10.2514/2.1323 LinkGoogle Scholar[30] Chiatto M., Palumbo A. and de Luca L., “Design Approach to Predict Synthetic Jet Formation and Resonance Amplifications,” Experimental Thermal and Fluid Science, Vol. 107, No. 10, 2019, pp. 79–87. https://doi.org/10.1016/j.expthermflusci.2019.05.013 Google Scholar[31] He W., Luo Z., Deng X. and Xia Z., “Experimental Investigation on the Performance of a Novel Dual Synthetic Jet Actuator-Based Atomization Device,” International Journal of Heat and Mass Transfer, Vol. 142, No. 10, 2019, pp. 1–14. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.056 Google Scholar[32] Gallas Q., Holman R., Nishida T., Carroll B., Shelplak M. and Cattafesta L., “Lumped Element Modeling of Piezoelectric-Driven Synthetic Jet Actuators,” AIAA Journal, Vol. 41, No. 2, 2003, pp. 240–247. https://doi.org/10.2514/2.1936 LinkGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byThe Potential of Using Vortex Tube to Ameliorate Aircraft Environmental Control SystemWeiwei Chen, Zibing Luo, Xinjun Li, Xiaoming Tan, Jingzhou Zhang , Xiande Fang and Yevhenii Shkvar21 February 2023 | AIAA Journal, Vol. 0, No. 0Determining Region of Installation of Flat-Ended Piezoelectric De-Icing Actuators on Curved SurfacesBo Miao , Wen Li, Lang Yuan and Chunling Zhu6 July 2022 | Journal of Aircraft, Vol. 60, No. 1Design of the Thermoelectric Ice Protection System for a Tiltrotor ApplicationAlessandro Zanon and Michele De Gennaro21 April 2022 | Journal of Aircraft, Vol. 59, No. 5 What's Popular Volume 59, Number 4April 2021 CrossmarkInformationCopyright © 2020 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsActuatorsAerodynamic PerformanceAerodynamicsAeronautical EngineeringAeronauticsAviationAviation SafetyAviation Weather HazardsAvionicsGuidance, Navigation, and Control SystemsThermal EffectsThermoelectric EffectThermophysics and Heat TransferWind Tunnels KeywordsPiezoelectric ActuatorsIce Protection SystemThermoelectric SystemAnti Icing SystemAerodynamic CharacteristicsIcing ConditionsEnergy ConsumptionSupercoolingResonance FrequenciesIcing Wind TunnelAcknowledgmentsThis work was supported by the National Natural Science Foundation of China (grant numbers 11572338, 11872374, 12002377, and 51809271) and the Open Fund of the Key Laboratory of Icing and Anti/De-Icing (grant number 1901IADL20190401).PDF Received20 June 2020Accepted2 November 2020Published online8 December 2020
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spark810应助科研通管家采纳,获得30
1分钟前
19950220完成签到,获得积分10
1分钟前
应夏山完成签到 ,获得积分10
2分钟前
qcrcherry完成签到,获得积分10
2分钟前
spark810应助科研通管家采纳,获得30
3分钟前
spark810应助科研通管家采纳,获得30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
al完成签到 ,获得积分10
3分钟前
稻子完成签到 ,获得积分10
4分钟前
Ava应助lovelife采纳,获得10
6分钟前
7分钟前
zhangsan完成签到,获得积分10
7分钟前
侠客完成签到 ,获得积分10
7分钟前
阿木木完成签到,获得积分10
8分钟前
imi完成签到 ,获得积分10
8分钟前
9分钟前
pengpengyin发布了新的文献求助10
9分钟前
lovelife发布了新的文献求助10
9分钟前
pengpengyin完成签到,获得积分10
9分钟前
华仔应助slchein采纳,获得10
9分钟前
CHAI关注了科研通微信公众号
10分钟前
CHAI发布了新的文献求助10
10分钟前
chcmy完成签到 ,获得积分0
10分钟前
lanxinge完成签到 ,获得积分20
10分钟前
研友_nxw2xL完成签到,获得积分10
10分钟前
muriel完成签到,获得积分10
11分钟前
zai完成签到 ,获得积分20
13分钟前
15分钟前
slchein发布了新的文献求助10
15分钟前
16分钟前
slchein完成签到,获得积分10
16分钟前
YUYUYU发布了新的文献求助10
16分钟前
Ava应助hairgod采纳,获得10
17分钟前
17分钟前
胡呵呵发布了新的文献求助10
17分钟前
orixero应助胡呵呵采纳,获得10
17分钟前
英俊的铭应助YUYUYU采纳,获得10
17分钟前
张zhang完成签到 ,获得积分10
19分钟前
方白秋完成签到,获得积分10
19分钟前
20分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154987
求助须知:如何正确求助?哪些是违规求助? 2805698
关于积分的说明 7865856
捐赠科研通 2463969
什么是DOI,文献DOI怎么找? 1311680
科研通“疑难数据库(出版商)”最低求助积分说明 629728
版权声明 601853