Novel Hybrid Ice Protection System Combining Thermoelectric System and Synthetic Jet Actuator

结冰 中国 航空学 空气动力学 航空航天 工程类 研究中心 航空航天工程 气象学 机械工程 政治学 地理 法学
作者
Shengke Yang,Xian Yi,Qiling Guo,Chunhua Xiao,Zhenbing LUO,Yan Zhou
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:59 (4): 1496-1500 被引量:8
标识
DOI:10.2514/1.j059906
摘要

No AccessTechnical NotesNovel Hybrid Ice Protection System Combining Thermoelectric System and Synthetic Jet ActuatorShengke Yang, Xian Yi, Qiling Guo, Chunhua Xiao, Zhenbing Luo and Yan ZhouShengke YangChina Aerodynamics Research and Development Center, 621000 Mianyang, People’s Republic of China*Engineer, Key Laboratory of Icing and Anti/De-Icing; .Search for more papers by this author, Xian YiChina Aerodynamics Research and Development Center, 621000 Mianyang, People’s Republic of China†Professor, Key Laboratory of Icing and Anti/De-Icing; .Search for more papers by this author, Qiling GuoChina Aerodynamics Research and Development Center, 621000 Mianyang, People’s Republic of China‡Assistant Engineer, Key Laboratory of Icing and Anti/De-Icing; .Search for more papers by this author, Chunhua XiaoChina Aerodynamics Research and Development Center, 621000 Mianyang, People’s Republic of China§Professor, Key Laboratory of Icing and Anti/De-Icing; .Search for more papers by this author, Zhenbing LuoNational University of Defense Technology, 410073 Changsha, People’s Republic of China¶Professor, College of Aerospace Science and Engineering; .Search for more papers by this author and Yan ZhouNational University of Defense Technology, 410073 Changsha, People’s Republic of China**Lecturer, College of Aerospace Science and Engineering; .Search for more papers by this authorPublished Online:8 Dec 2020https://doi.org/10.2514/1.J059906SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Gent R. W., Dart N. P. and Cansdale J. T., “Aircraft Icing,” Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, Vol. 358, No. 1776, 2000, pp. 2873–2911. https://doi.org/10.1098/rsta.2000.0689 CrossrefGoogle Scholar[2] Valarezo W. O., Lynch F. T. and McGhee R. J., “Aerodynamic Performance Effects due to Small Leading-Edge Ice(Roughness) on Wings and Tails,” Journal of Aircraft, Vol. 30, No. 6, 1993, pp. 807–812. https://doi.org/10.2514/3.46420 LinkGoogle Scholar[3] Gao T., Luo Z., Zhou Y., Liu Z., Peng W., Cheng P. and Den X., “Novel Deicing Method Based on Plasma Synthetic Jet Actuator,” AIAA Journal, Vol. 58, No. 9, 2020, pp. 4181–4188. https://doi.org/10.2514/1.J059352 LinkGoogle Scholar[4] Thomas S. K., Cassoni R. P. and MacArthur C. D., “Aircraft Anti-Icing and De-Icing Techniques and Modeling,” Journal of Aircraft, Vol. 33, No. 5, 1996, pp. 841–854. https://doi.org/10.2514/3.47027 LinkGoogle Scholar[5] Chang S. N., Yang B., Leng M. Y., Zhao Y. Y. and Liu M. Y., “Study on Bleed Air Anti-Icing System of Aircraft,” Journal of Aerospace Power, Vol. 32, No. 5, 2017, pp. 1025–1034. https://doi.org/10.13224/j.cnki.jasp.2017.05.001 Google Scholar[6] Venna S. V., Lin Y. and Botura G., “Piezoelectric Transducer Actuated Leading Edge De-Icing with Simultaneous Shear and Impulse Forces,” Journal of Aircraft, Vol. 44, No. 2, 2007, pp. 509–515. https://doi.org/10.2514/1.23996 LinkGoogle Scholar[7] Pourbagian M. and Habashi W. G., “Aero-Thermal Optimization of In-Flight Electro-Thermal Ice Protection Systems in Transient De-Icing Mode,” International Journal of Heat and Fluid Flow, Vol. 54, Aug. 2015, pp. 167–182. https://doi.org/10.1016/j.ijheatfluidflow.2015.05.012 CrossrefGoogle Scholar[8] Meng X., Hu H., Li C., Abbasi A. A., Cai J. and Hu H., “Mechanism Study of Coupled Aerodynamic and Thermal Effects Using Plasma Actuation for Anti-Icing,” Physics of Fluids, Vol. 31, No. 3, 2019, Paper 037103. https://doi.org/10.1063/1.5086884 CrossrefGoogle Scholar[9] Wei B., Wu Y., Liang H., Chen J., Zhao G., Tian M. and Xu H., “Performance and Mechanism Analysis of Nanosecond Pulsed Surface Dielectric Barrier Discharge Based Plasma Deicer,” Physics of Fluids, Vol. 31, No. 9, 2019, Paper 091701. https://doi.org/10.1063/1.5115272 Google Scholar[10] Budinger M., Pommier-Budinger V., Bennani L., Rouset P., Bonaccurso E. and Dezitter F., “Electromechanical Resonant Ice Protection Systems: Analysis of Fracture Propagation Mechanisms,” AIAA Journal, Vol. 56, No. 11, 2018, pp. 4412–4422. https://doi.org/10.2514/1.J056663 LinkGoogle Scholar[11] Zhou W., Liu Y., Hu H., Hu H. and Meng X., “Utilization of Thermal Effect Induced by Plasma Generation for Aircraft Icing Mitigation,” AIAA Journal, Vol. 56, No. 3, 2018, pp. 1097–1104. https://doi.org/10.2514/1.J056358 LinkGoogle Scholar[12] Liu Y., Kolbakir C., Hu H. and Hu H., “A Comparison Study on the Thermal Effects in DBD Plasma Actuation and Electrical Heating for Aircraft Icing Mitigation,” International Journal of Heat and Mass Transfer, Vol. 124, Sept. 2018, pp. 319–330.https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.076 CrossrefGoogle Scholar[13] Calay R. K., Holdo A. E., Mayman P. and Lun I., “Experimental Simulation of Runback Ice,” Journal of Aircraft, Vol. 34, No. 2, 1997, pp. 206–212. https://doi.org/10.2514/2.2173 LinkGoogle Scholar[14] Huang X., Tepylo N., Pommier-Budinger V., Budinger M., Bonaccurso E., Villedieu P. and Bennani L., “A Survey of Icephobic Coatings and Their Potential Use in a Hybrid Coating/Active Ice Protection System for Aerospace Applications,” Progress in Aerospace Sciences, Vol. 105, No. 1, 2019, pp. 74–97. https://doi.org/10.1016/j.paerosci.2019.01.002 Google Scholar[15] Al-Khalil K., Ferguson T. and Phillips D., “A Hybrid Anti-Icing Ice Protection System,” 35th Aerospace Sciences Meeting and Exhibit, AIAA Paper 1997-0302, 1997. https://doi.org/10.2514/6.1997-302 LinkGoogle Scholar[16] Al-Khalil K., “Thermo-Mechanical Expulsive Deicing System-TMEDS,” 45th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2007-0692, 2007. https://doi.org/10.2514/6.2007-692 LinkGoogle Scholar[17] Fortin G., Adomou M. and Perron J., “Experimental Study of Hybrid Anti-Icing Systems Combining Thermoelectric and Hydrophobic Coatings,” SAE TP 2011-38-0003, Warrendale, PA, 2011. https://doi.org/10.4271/2011-38-0003 CrossrefGoogle Scholar[18] Strobl T., Adam R., Tuschter M., Tuschter D., Thompson D. and Hornung M., “Feasibility Study of a Hybrid Ice Protection System Based on Passive Removal of Residual Ice,” 53rd AIAA Aerospace Sciences Meeting, AIAA Paper 2015-0032, Jan. 2015. https://doi.org/10.2514/6.2015-0032 LinkGoogle Scholar[19] Strobl T., Storm S., Thompson D. and Hornung M., “Feasibility Study of a Hybrid Ice Protection System,” Journal of Aircraft, Vol. 52, No. 6, 2015, pp. 2064–2076. https://doi.org/10.2514/1.C033161 LinkGoogle Scholar[20] Wang J. and Wu J., “Aerodynamic Performance Improvement of a Pitching Airfoil via a Synthetic Jet,” European Journal of Mechanics—B/Fluids, Vol. 83, No. 4, 2020, pp. 73–85. https://doi.org/10.1016/j.euromechflu.2020.04.009 Google Scholar[21] Amitay M., Smith D. R., Kibens V., Parekh D. E. and Glezer A., “Aerodynamic Flow Control over an Unconventional Airfoil Using Synthetic Jet Actuators,” AIAA Journal Vol. 39, No. 3, 2001, pp. 361–370. https://doi.org/10.2514/2.1323 LinkGoogle Scholar[22] Wang L., Feng L., Wang J. and Li T., “Characteristics and Mechanism of Mixing Enhancement for Noncircular Synthetic Jets at Low Reynolds Number,” Experimental Thermal and Fluid Science, Vol. 98, No. 11, 2018, pp. 731–743. https://doi.org/10.1016/j.expthermflusci.2018.06.021 Google Scholar[23] Luo Z., Deng X., Xia Z., Wang L. and Gong W., “Flow Field and Heat Transfer Characteristics of Impingement Based on a Vectoring Dual Synthetic Jet Actuator,” International Journal of Heat and Mass Transfer, Vol. 102, No. 11, 2016, pp. 18–25. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.003 Google Scholar[24] Nikisha N., Golubev V. and Nakhla H., “On Icing Control Using Thermally Activated Synthetic Jets,” AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2013-0093, 2013. https://doi.org/10.2514/6.2013-93 Google Scholar[25] FAA, “Part 25 Airworthiness Standards: Transport Category Airplanes,” Federal Aviation Regulations, 2003. Google Scholar[26] FAA, “Pilot Guide: Flight in Icing Conditions,” Federal Aviation Regulations, 2007. Google Scholar[27] Shinkafi A. and Lawson C., “Enhanced Method of Conceptual Sizing of Aircraft Electro-Thermal De-Icing System,” International Journal of Aerospace and Mechanical Engineering, Vol. 8, No. 6, 2014, pp. 1065–1072. https://doi.org/10.5281/zenodo.2661308 Google Scholar[28] Goodfellow S., Yarusevych S. and Sullivan P., “Momentum Coefficient as a Parameter for Aerodynamic Flow Control with Synthetic Jets,” AIAA Journal, Vol. 51, No. 3, 2013, pp. 623–631. https://doi.org/10.2514/1.J051935 LinkGoogle Scholar[29] Amitay M., Smith D., Kibens V., Parekh D. E. and Glezer A., “Aerodynamic Flow Control over an Unconventional Airfoil Using Synthetic Jet Actuators,” AIAA Journal, Vol. 39, No. 3, 2001, pp. 361–370.https://doi.org/10.2514/2.1323 LinkGoogle Scholar[30] Chiatto M., Palumbo A. and de Luca L., “Design Approach to Predict Synthetic Jet Formation and Resonance Amplifications,” Experimental Thermal and Fluid Science, Vol. 107, No. 10, 2019, pp. 79–87. https://doi.org/10.1016/j.expthermflusci.2019.05.013 Google Scholar[31] He W., Luo Z., Deng X. and Xia Z., “Experimental Investigation on the Performance of a Novel Dual Synthetic Jet Actuator-Based Atomization Device,” International Journal of Heat and Mass Transfer, Vol. 142, No. 10, 2019, pp. 1–14. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.056 Google Scholar[32] Gallas Q., Holman R., Nishida T., Carroll B., Shelplak M. and Cattafesta L., “Lumped Element Modeling of Piezoelectric-Driven Synthetic Jet Actuators,” AIAA Journal, Vol. 41, No. 2, 2003, pp. 240–247. https://doi.org/10.2514/2.1936 LinkGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byThe Potential of Using Vortex Tube to Ameliorate Aircraft Environmental Control SystemWeiwei Chen, Zibing Luo, Xinjun Li, Xiaoming Tan, Jingzhou Zhang , Xiande Fang and Yevhenii Shkvar21 February 2023 | AIAA Journal, Vol. 0, No. 0Determining Region of Installation of Flat-Ended Piezoelectric De-Icing Actuators on Curved SurfacesBo Miao , Wen Li, Lang Yuan and Chunling Zhu6 July 2022 | Journal of Aircraft, Vol. 60, No. 1Design of the Thermoelectric Ice Protection System for a Tiltrotor ApplicationAlessandro Zanon and Michele De Gennaro21 April 2022 | Journal of Aircraft, Vol. 59, No. 5 What's Popular Volume 59, Number 4April 2021 CrossmarkInformationCopyright © 2020 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsActuatorsAerodynamic PerformanceAerodynamicsAeronautical EngineeringAeronauticsAviationAviation SafetyAviation Weather HazardsAvionicsGuidance, Navigation, and Control SystemsThermal EffectsThermoelectric EffectThermophysics and Heat TransferWind Tunnels KeywordsPiezoelectric ActuatorsIce Protection SystemThermoelectric SystemAnti Icing SystemAerodynamic CharacteristicsIcing ConditionsEnergy ConsumptionSupercoolingResonance FrequenciesIcing Wind TunnelAcknowledgmentsThis work was supported by the National Natural Science Foundation of China (grant numbers 11572338, 11872374, 12002377, and 51809271) and the Open Fund of the Key Laboratory of Icing and Anti/De-Icing (grant number 1901IADL20190401).PDF Received20 June 2020Accepted2 November 2020Published online8 December 2020
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qx发布了新的文献求助10
1秒前
big ben完成签到 ,获得积分10
2秒前
pophoo完成签到,获得积分10
2秒前
小北完成签到,获得积分10
3秒前
Laputa完成签到,获得积分10
4秒前
月光族完成签到,获得积分10
4秒前
faye完成签到,获得积分10
5秒前
任性的皮卡丘完成签到 ,获得积分10
6秒前
明理夏槐发布了新的文献求助10
6秒前
王正浩完成签到 ,获得积分10
7秒前
天马行空完成签到,获得积分10
8秒前
just完成签到,获得积分10
8秒前
锦秋完成签到 ,获得积分10
9秒前
qingxinhuo完成签到 ,获得积分10
9秒前
shuqi完成签到 ,获得积分10
10秒前
刘zx完成签到,获得积分10
11秒前
隐形芯完成签到 ,获得积分10
11秒前
张真狗完成签到,获得积分10
12秒前
13秒前
喜悦松完成签到,获得积分10
15秒前
娟娟完成签到 ,获得积分10
15秒前
plumcute完成签到,获得积分10
16秒前
手术刀完成签到 ,获得积分10
16秒前
16秒前
吨吨完成签到,获得积分10
17秒前
沫荔完成签到 ,获得积分10
17秒前
19秒前
来日方长应助张真狗采纳,获得10
20秒前
Tianju完成签到,获得积分10
20秒前
qx发布了新的文献求助10
20秒前
苏芳完成签到,获得积分10
21秒前
135完成签到 ,获得积分10
21秒前
21秒前
松鼠15111完成签到,获得积分10
22秒前
科研通AI2S应助整齐百褶裙采纳,获得10
23秒前
小黑完成签到 ,获得积分20
23秒前
熊博士完成签到,获得积分10
24秒前
26秒前
墨尔根戴青完成签到,获得积分10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027