已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using Machine Learning to Make Predictions in Patients Who Fall

医学 接收机工作特性 逻辑回归 重症监护室 人口统计学的 决策树 人口 曲线下面积 入射(几何) 死亡率 创伤中心 随机森林 急诊医学 机器学习 算法 回顾性队列研究 内科学 人口学 数学 计算机科学 社会学 环境卫生 几何学
作者
Andrew J. Young,Allison J. Hare,Madhu Subramanian,Jessica L. Weaver,Elinore J. Kaufman,Carrie A. Sims
出处
期刊:Journal of Surgical Research [Elsevier]
卷期号:257: 118-127 被引量:15
标识
DOI:10.1016/j.jss.2020.07.047
摘要

Abstract

Background

As the population ages, the incidence of traumatic falls has been increasing. We hypothesize that a machine learning algorithm can more accurately predict mortality after a fall compared with a standard logistic regression (LR) model based on immediately available admission data. Secondary objectives were to predict who would be discharged home and determine which variables had the largest effect on prediction.

Methods

All patients who were admitted for fall between 2012 and 2017 at our level 1 trauma center were reviewed. Fourteen variables describing patient demographics, injury characteristics, and physiology were collected at the time of admission and were used for prediction modeling. Algorithms assessed included LR, decision tree classifier (DTC), and random forest classifier (RFC). Area under the receiver operating characteristic curve (AUC) values were calculated for each algorithm for mortality and discharge to home.

Results

About 4725 patients met inclusion criteria. The mean age was 61 ± 20.5 y, Injury Severity Score 8 ± 7, length of stay 5.8 ± 7.6 d, intensive care unit length of stay 1.8± 5.2 d, and ventilator days 0.7 ± 4.2 d. The mortality rate was 3% and three times greater for elderly (aged 65 y and older) patients (5.0% versus 1.6%, P < 0.001). The AUC for predicting mortality for LR, DTC, and RFC was 0.78, 0.64, and 0.86, respectively. The AUC for predicting discharge to home for LR, DTC, and RFC was 0.72, 0.61, and 0.74, respectively. The top five variables that contribute to the prediction of mortality in descending order of importance are the Glasgow Coma Score (GCS) motor, GCS verbal, respiratory rate, GCS eye, and temperature.

Conclusions

RFC can accurately predict mortality and discharge home after a fall. This predictive model can be implemented at the time of patient arrival and may help identify candidates for targeted intervention as well as improve prognostication and resource utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
老肖应助清脆雅绿采纳,获得10
1秒前
2秒前
哈哈哈哈发布了新的文献求助20
4秒前
黙宇循光发布了新的文献求助10
8秒前
13秒前
英俊的铭应助摘星数羊采纳,获得10
14秒前
万能图书馆应助hd采纳,获得10
14秒前
WLL发布了新的文献求助10
15秒前
Cuinewb发布了新的文献求助30
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
Orange应助科研通管家采纳,获得10
18秒前
浅尝离白应助科研通管家采纳,获得30
18秒前
无花果应助科研通管家采纳,获得10
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
科研通AI2S应助xixixixixixi采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得30
18秒前
yangching应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
Fandebiao应助科研通管家采纳,获得10
18秒前
19秒前
小刘完成签到,获得积分10
19秒前
粒子耶完成签到,获得积分10
20秒前
岁月静好Taoyi完成签到 ,获得积分10
22秒前
mozhi发布了新的文献求助10
24秒前
24秒前
25秒前
yanhan2009完成签到 ,获得积分10
25秒前
wanci应助cici采纳,获得10
29秒前
摘星数羊发布了新的文献求助10
29秒前
娜娜发布了新的文献求助10
30秒前
星辰大海应助WLL采纳,获得10
32秒前
33秒前
yufei发布了新的文献求助30
33秒前
娜娜完成签到,获得积分10
41秒前
41秒前
42秒前
42秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161877
求助须知:如何正确求助?哪些是违规求助? 2813104
关于积分的说明 7898643
捐赠科研通 2472140
什么是DOI,文献DOI怎么找? 1316350
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129