A Two-Stage Transfer Adversarial Network for Intelligent Fault Diagnosis of Rotating Machinery With Multiple New Faults

对抗制 学习迁移 计算机科学 人工智能 深度学习 断层(地质) 领域(数学分析) 机器学习 卷积神经网络 故障检测与隔离 方案(数学) 传输(计算) 模式识别(心理学) 数学 数学分析 地震学 执行机构 并行计算 地质学
作者
Jipu Li,Ruyi Huang,Guolin He,Yixiao Liao,Zhen Wang,Weihua Li
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:26 (3): 1591-1601 被引量:139
标识
DOI:10.1109/tmech.2020.3025615
摘要

Recently, deep transfer learning based intelligent fault diagnosis has been widely investigated, and the tasks that source and target domains share the same fault categories have been well addressed. However, due to complexity and uncertainty of mechanical equipment, unknown new faults may occur unexpectedly. This problem has received less attention in the current research, which seriously limited the application of deep transfer learning. In this article, a two-stage transfer adversarial network is proposed for multiple new faults detection of rotating machinery. First, a novel deep transfer learning model is constructed based on an adversarial learning strategy, which can effectively separate multiple unlabeled new fault types from labeled known ones. Second, an unsupervised convolutional autoencoders model with silhouette coefficient is built to recognize the number of new fault types. Extensive experiments on a gearbox dataset validate the practicability of the proposed scheme. The results suggest that it is promising to address fault diagnosis transfer tasks in which the multiple new faults occur in the target domain, which greatly expand the application of deep transfer learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kent完成签到,获得积分10
2秒前
2秒前
CodeCraft应助宝宝慧儿7采纳,获得10
2秒前
小马甲应助小卡采纳,获得10
3秒前
岩土HB完成签到,获得积分10
3秒前
3秒前
秋山红雨完成签到,获得积分20
3秒前
李健的小迷弟应助丘小七采纳,获得10
4秒前
聪明的云完成签到 ,获得积分10
6秒前
NexusExplorer应助活泼的便当采纳,获得10
6秒前
fafafa发布了新的文献求助10
7秒前
lzx关闭了lzx文献求助
8秒前
asdf发布了新的文献求助10
8秒前
努力的淼淼完成签到 ,获得积分10
10秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
无私的芹应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
aslink发布了新的文献求助10
13秒前
无私的芹应助科研通管家采纳,获得10
13秒前
13秒前
无私的芹应助科研通管家采纳,获得10
13秒前
13秒前
bubble嘞完成签到 ,获得积分10
13秒前
orixero应助樱香音子采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
13秒前
CAOHOU应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
liaodongjun应助科研通管家采纳,获得10
13秒前
14秒前
14秒前
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
14秒前
linshunan完成签到 ,获得积分10
14秒前
完美世界应助调皮的樱采纳,获得10
14秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959519
求助须知:如何正确求助?哪些是违规求助? 3505756
关于积分的说明 11125718
捐赠科研通 3237616
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802902